Publication Name: Journal of Computational and Applied Mathematics
Publication Date: 2023-05-01
Volume: 424
Issue: Unknown
Page Range: Unknown
Description:
Optimization is an essential part of designing electrical machines and devices. Considering the uncertainties and tolerances from the beginning of the design process can lead to a more robust design and significantly reduce the number of waste products during the manufacturing process. However, the computational demand for these robust design optimization problems is amazingly high. This paper examines how the computational demand and the robustness of the results depend on the applied sensitivity metric. The multi-objective TEAM 35 benchmark problem has been used as the basis of the comparison. This optimization task aims to create a homogeneous magnetic field in a predefined coil region, which is insensitive to the positioning errors of the coil turns. The original definition of the problem uses a simple worst-case sensitivity metric calculated from the extreme values of the optimized turn parameters in the given tolerance range. This sensitivity metric has been replaced by Plackett–Burman, Box–Behnken, and Central Composite Design-based metrics. It was shown in this simple geometry that there is a significant difference between the resulting sensitivities. Nevertheless, Plackett–Burman and Central Composite Design provided the more accurate and consistent estimate of the sensitivity of the examined layouts, with a higher but still reasonable computation demand than the worst-case metric.
There is a great potential in small satellite technology for testing new sensors, processes, and technologies for space applications. Antennas need careful design when developing a small satellite to establish stable communication between the ground station and the satellite. This work is motivated by the design of an antenna array for a future rotatorless base station for the VZLUSAT group of Czech nano-satellites. The realized antenna array must cover a relatively broad range of elevation and azimuth angles, and the control must be fast enough to track the satellite in low Earth orbits. The paper deals with possibilities of synthesis of quantized control of the antenna array. It compares quantization influence for well-known deterministic synthesis methods. It shows the method for decreasing computational cost of synthesis using optimization approach and presents the multi-criteria optimization as a tool for reaching required radiation pattern shape and low sensitivity to quantization at the same time.