Jaka Sunarso

55886213900

Publications - 3

Multi-Solution Heat Exchanger Network Synthesis for Turbo-Expander-Based Cryogenic CO2 Capture Technology

Publication Name: Industrial and Engineering Chemistry Research

Publication Date: 2025-01-22

Volume: 64

Issue: 3

Page Range: 1664-1679

Description:

Cryogenic separation of CO2 is a potential technology that can benefit from energy efficiency improvements. However, the current conventional and emerging cryogenic technologies face challenges in terms of high utility consumption. The high utility requirement leads to increasing operational costs and emissions due to the production of required utilities from external energy sources. This issue can be solved if the heat recovery potential of the technology can be realized. Heat recovery enables further improvement in energy efficiency that is required to elevate the feasibility of cryogenic separation. This paper explores heat recovery opportunities between hot and cold streams in a novel cryogenic CO2 capture technology known as Turbo-Expander-based Cryogenic Distillation (CryoDT). This is achieved using P-HENS, a P-graph-based heat exchanger network synthesis tool where multiple feasible heat exchanger network configurations are generated to determine the options that effectively recover process heat to reduce utility consumption. Moreover, the solutions generated by P-HENS are benchmarked with other tools like Aspen Energy Analyzer, by comparing the number of required heat exchangers, along with the associated capital and operating costs. For the predefined hot and cold process streams of the novel technology, the total number of heat exchangers present in the network was lower in the recommended design using P-HENS (i.e., 9 heat exchangers) as opposed to Aspen Energy Analyzer (16 heat exchangers) while maintaining similar energy consumption levels. This indicates that there is a further opportunity to reduce capital costs as a result of less heat exchangers. The CryoDT configuration that is integrated with a heat exchanger network offers significant economic advantages as opposed to other existing cryogenic processes in the market such as the Ryan Holmes and Controlled Freeze Zone (CFZ) processes. Despite its high capital cost, the CryoDT process demonstrates significantly lower operating cost relative to the other two processes. Hence, while the initial investment is substantial, the CryoDT process is much more cost efficient to operate. The low operating cost is attributed to its higher energy efficiency and minimal energy penalties, with only 0.26 GJ/tonne of CO2 compared with 0.82 GJ/tonne of CO2 for the CFZ process and 2.33 GJ/tonne of CO2 for Ryan Holmes. In contrast, the Ryan Holmes process, despite its low capital cost, incurs extremely high annual operational costs, rendering it less economic in the long term. The CFZ process, with its moderate operating cost, presents a balance between capital cost and operational efficiency.

Open Access: Yes

DOI: 10.1021/acs.iecr.4c03469

The P-graph application extension in multi-period P2P energy trading

Publication Name: Renewable and Sustainable Energy Reviews

Publication Date: 2024-08-01

Volume: 200

Issue: Unknown

Page Range: Unknown

Description:

An optimization model that incorporates all combinatorically feasible inter-plant collaboration networks is developed using P-graph. It has been theoretically proven that time-sliced-based energy planning optimization has positive impacts and is capable of achieving carbon emissions reduction goals and minimizing costs simultaneously. However, as the number of entities increased, an exponential growth in possible combinatorial feasible coalitions is anticipated. Therefore, an extension of the P-graph optimization tool that is capable of generating all possible outcomes in multi-period P2P energy trading – PEP (P-graph for energy planning) is developed. The PEP software can be effectively used in modelling complex process networks graphically and solving optimization problems with the combined advantages of combinatorial algorithms and mathematical programming. In this paper, a systematic framework for implementing P2P energy trading using PEP software is proposed and demonstrated using a real-life case study.

Open Access: Yes

DOI: 10.1016/j.rser.2024.114544

Enabling in-depth analysis in heat exchanger network synthesis via graph-theoretic tool: Experiences in Swinburne University of Technology Sarawak Campus

Publication Name: Education for Chemical Engineers

Publication Date: 2023-04-01

Volume: 43

Issue: Unknown

Page Range: 100-112

Description:

The ability and capability to analyze and benchmark alternative designs on top of the optimal network are deemed valuable competencies for current and future chemical engineers. In this context, a process graph (P-graph)-inspired tool – P-HENS is introduced to an integrated plant design unit in an undergraduate chemical engineering degree program at Swinburne University of Technology Sarawak Campus in Malaysia. The energy recovery aspect is one of the key design elements in the integrated plant design unit. The introduction of P-HENS, which is capable of mathematically determining multiple optimal and sub-optimal solutions is considered useful for the students to (i) identify plausible heat exchanger networks (HENs) structures that may be overlooked using conventional approaches and (ii) enable a more in-depth analysis to justify the selected design. Overall, the implementation of P-HENS shows positive outcomes, where this free-of-charge software complements the learning of conventional manual approaches used in HENs synthesis. Furthermore, recommendations suggested by the users (students) are collected and compiled for potential future software development. This work serves as an essential reference for other chemical engineering educators who are teaching pinch analysis or heat integration-related courses.

Open Access: Yes

DOI: 10.1016/j.ece.2022.12.003