Péter Raffai

56246819200

Publications - 2

Oil Degradation Patterns in Diesel and Petrol Engines Observed in the Field—An Approach Applying Mass Spectrometry

Publication Name: Lubricants

Publication Date: 2023-09-01

Volume: 11

Issue: 9

Page Range: Unknown

Description:

Engine oil degradation and tribological properties are strongly interrelated. Hence, understanding the chemical processes resulting in additive depletion and degradation products is necessary. In this study, in-service engine oils from petrol and diesel vehicles were analyzed with conventional and advanced methods (mass spectrometry). Additionally, the effect of the utilization profile (short- vs. long-range) was studied. Petrol engine oils generally showed accelerated antioxidant and antiwear degradation and higher oxidation, especially in the case of a short-range utilization profile, which can be attributed to the higher air-to-fuel ratio (more rich combustion) compared to diesel engines. A detailed overview of oxidation and nitration products, as well as degradation products resulting from zinc dialkyl dithiophosphate and boron ester antiwear additives, diphenylamine antioxidants and salicylate detergents is given. A side reaction between oxidation products (aromatic carboxylic acids) and the boron ester antiwear is highlighted. This reaction was only detected in the petrol engine oils, where the oxidation products were measured in a high abundance. However, no side reaction was found in the samples from the diesel vehicles, since there the aromatic carboxylic acids were largely absent due to lower oxidation.

Open Access: Yes

DOI: 10.3390/lubricants11090404

Rapid fleet condition analysis through correlating basic vehicle tracking data with engine oil ft-ir spectra

Publication Name: Lubricants

Publication Date: 2021-12-01

Volume: 9

Issue: 12

Page Range: Unknown

Description:

Engine oil condition and tribological performance are strongly interrelated. Accordingly, oil condition monitoring is common in various applications. This is especially important, as oil condition depends on the fueling and utilization profile of an internal combustion engine. Common practice involves the measurement of various parameters, such as the total acid number and total base number, oxidation, nitration, viscosity, and elemental composition; thus, it can be time-consuming and resource-intensive. This study provides a methodology for rapid analysis for large vehicle fleets or sample sizes, using only Fourier-transformed infrared spectroscopy and the subsequent multivariate data analysis offers a rapid alternative to commonly available methods. The described method provides a rapid, cost-efficient, and intuitive approach to uncovering differences in the oil condition. Furthermore, understanding the underlying reasons in engine construction and the resulting chemical degradation is also possible.

Open Access: Yes

DOI: 10.3390/lubricants9120114