Wei Li

57207125558

Publications - 3

Dynamic regulation strategy of the SCO2 Brayton cycle system based on PCM and its instability evaluation model

Publication Name: Energy

Publication Date: 2025-10-15

Volume: 334

Issue: Unknown

Page Range: Unknown

Description:

The dynamic study of the Supercritical Carbon Dioxide (SCO2) Brayton cycle has received extensive attention from the industry in recent years. While various dynamic operating conditions occur intermittently within the system, some commonly used control methods are unable to adapt effectively to those situations. In this study, a dynamic model of the SCO2 Brayton cycle coupled with a printed circuit heat exchanger with embedded PCM, a storage tank, and a proportional-integral-derivative (PID) controller was developed and validated with the model, and then the control effects of the various control models were compared in terms of their control effectiveness under three typical variable operating conditions (periodic temperature fluctuation, load reduction and recovery, and reduced flow rate). In addition, the stability assessment of the SCO2 Brayton cycle was modeled. Compared to the basic SCO2 Brayton cycle, the PCM-PCHE reduces the amplitude of the total efficiency fluctuations by 44.8 %, and the integrated layout covering the printed circuit heat exchanger with embedded PCM, storage tank, and PID controller shows the best stability. Controlling the extraction ratio with a PID controller contributes more to the stability of the SCO2 Brayton cycle than controlling the condensate flow rate with a PID controller. In contrast, the printed circuit heat exchanger with an embedded PCM contributes more to the stability of the SCO2 Brayton cycle concerning the storage tank. Overall, the total control layout reduced the instability by about 40 % compared to the initial recompression layout, indicating that the PCM, storage tank, and PID controller greatly improved the stability of the SCO2 Brayton cycle.

Open Access: Yes

DOI: 10.1016/j.energy.2025.137838

Corrigendum to ‘Graphical pinch analysis-based method for heat exchanger networks retrofit of a residuum hydrogenation process’ [Energy volume 299 (2024) 131538] (Energy (2024) 299, (S0360544224013112), (10.1016/j.energy.2024.131538))

Publication Name: Energy

Publication Date: 2024-11-30

Volume: 310

Issue: Unknown

Page Range: Unknown

Description:

The contribution of Pawel Oclon has been funded by the EU project “Renewable energy system for residential building heating and electricity production–RESHeat”, Grant Agreement #956255. The work of Petar Varbanov has been funded by the Széchenyi István University in Hungary. The authors would like to apologise for any inconvenience caused.

Open Access: Yes

DOI: 10.1016/j.energy.2024.133291

Graphical pinch analysis-based method for heat exchanger networks retrofit of a residuum hydrogenation process

Publication Name: Energy

Publication Date: 2024-07-15

Volume: 299

Issue: Unknown

Page Range: Unknown

Description:

Sustainable energy systems are crucial for reducing carbon emissions because renewable energy sources leave a footprint. The petrochemical industry often suffers from inefficient heat exchange network (HEN) systems, leading to substantial energy wastage. In the current work, a real case study of the residue hydrogenation process was analyzed to identify potential energy savings. A new method combining Pinch Analysis and Thot–Tcold diagram analysis methods was proposed. This graphical analysis method plots the cold-flow temperature of each heat exchanger unit on the x-axis and the hot-flow temperature on the y-axis. By applying the Thot–Tcold diagram to a practical case of residue hydrogenation in Zhejiang, the existing process energy state was evaluated, and HEN was retrofitted to achieve energy savings and carbon emission reduction. Following optimization, the energy recovery amounted to 202.71 GJ/h with an energy recovery rate of 14.3 %. The proposed method saves approximately 4.058 × 105 GJ/y compared to current operations, resulting in an annual cost saving of approximately $ 2.76 M/y, with an investment payback period of less than 0.36 y. This study offers a solution to the energy challenges of industrial residue hydrogenation by enhancing the economic and environmental sustainability of existing process flows.

Open Access: Yes

DOI: 10.1016/j.energy.2024.131538