Haruna Gado Yakubu

57219389503

Publications - 6

Coffees Brewed from Standard Capsules Help to Compare Different Aroma Fingerprinting Technologies—A Comparison of an Electronic Tongue and Electronic Noses

Publication Name: Chemosensors

Publication Date: 2025-07-01

Volume: 13

Issue: 7

Page Range: Unknown

Description:

With the development of various new types of instrumental aroma sensing technologies, there is a need for methodologies that help developers and users evaluate the performance of the different devices. This study introduces a simple method that uses standard coffee beverages, reproducible worldwide, thus allowing users to compare aroma sensing devices and technologies globally. Eight different variations of commercial coffee capsules were used to brew espresso coffees (40 mL), consisting of either Arabica coffee or a blend of Robusta and Arabica coffee, covering a wide range of sensory attributes. The AlphaMOS Astree electronic tongue (equipped with sensors based on chemically modified field-effect transistor technology) and the AlphaMOS Heracles NEO and the Volatile Scout3 electronic noses (both using separation technology based on gas chromatography) were used to describe the taste and odor profiles of the freshly brewed coffee samples and also to compare them to the various sensory characteristics declared on the original packaging, such as intensity, roasting, acidity, bitterness, and body. Linear discriminant analysis (LDA) results showed that these technologies were able to classify the samples similarly to the pattern of the coffees based on the human sensory characteristics. In general, the arrangement of the different coffee types in the LDA results—i.e., the similarities and dissimilarities in the types based on their taste or smell—was the same in the case of the Astree electronic tongue and the Heracles electronic nose, while slightly different arrangements were found for the Scout3 electronic nose. The results of the Astree electronic tongue and those of the Heracles electronic nose showed the taste and smell profiles of the decaffeinated coffees to be different from their caffeinated counterparts. The Heracles and Scout3 electronic noses provided high accuracies in classifying the samples based on their odor into the sensory classes presented on the coffee capsules’ packaging. Despite the technological differences in the investigated devices, the introduced coffee test could assess the similarities in the taste and odor profiling capacities of the aroma fingerprinting technologies. Since the coffee capsules used for the test can be purchased all over the world in the same quality, these coffees can be used as global standard samples during the comparison of different devices applying different measurement technologies. The test can be used to evaluate instrumentational and data analytical developments worldwide and to assess the potential of novel, cost-effective, accurate, and rapid solutions for quality assessments in the food and beverage industry.

Open Access: Yes

DOI: 10.3390/chemosensors13070261

Feeding Mixed Silages of Winter Cereals and Italian Ryegrass Can Modify the Fatty Acid and Odor Profile of Bovine Milk

Publication Name: Agriculture Switzerland

Publication Date: 2023-02-01

Volume: 13

Issue: 2

Page Range: Unknown

Description:

The utilization of corn silage in animal diets is becoming a challenge, due to the crop’s reduced yield as a result of climate change. Alternative silage types, such as mixtures of Italian ryegrass and winter cereals, may be a good complement to corn silage in diet formulation. Therefore, it is important to investigate how these alternative sources influence milk fatty acid and odor profile, as well as how these quality parameters could be efficiently evaluated. In this study, a corn silage-based control (CTR) and four experimental (EXP) diets—which contained winter cereals (WC), as well as WC with Italian ryegrass (IRG) silages in different proportions—were fed to Holstein-Friesian cows (n = 32) in a single-blinded efficacy study during a series of 4-week periods, with 2 weeks of adaption to each feed before the main trial. Milk from each trial was subjected to fatty acid (FA) analysis and odor profiling through the utilization of gas chromatography and an electronic nose, respectively. The results show that milk FAs in the EXP-3 and EXP-4 groups (which contained mixed silages using WC) changed the most when compared with other groups. Moreover, with a 7 kg/day inclusion rate of WC + IRG and of the WC silages in the diets of the EXP-2 and EXP-3 groups, respectively, the milk from these groups had their n6:n3 ratio reduced, thus indicating possible health benefits to consumers. The odor variation between the milk of the WC + IRG and WC groups was greater than the variation between the milk of the CTR and EXP groups. The main volatile compound responsible for the odor of the CTR milk was ethyl-butyrate, whereas 2-propanol and butan-2-one dominated the WC milk; the milk samples of the WC + IRG groups were influenced largely by ethanol. The study proved that with a 7 kg/day inclusion of mixed silages including winter cereals plus Italian ryegrass, the FA and odor profile of bovine milk could be modified.

Open Access: Yes

DOI: 10.3390/agriculture13020381

Near-infrared spectroscopy for rapid evaluation of winter cereals and Italian ryegrass forage mixtures

Publication Name: Animal Science Journal

Publication Date: 2023-01-01

Volume: 94

Issue: 1

Page Range: Unknown

Description:

Near-infrared (NIR) spectroscopy was employed to determine the differences between forage mixtures of winter cereals and Italian ryegrass and to evaluate fermentation characteristics of mixed silages. Forages were harvested on five phases (Cuts 1–5), with 1 week interval (n = 100). The yield of the last harvest (Cut 5) was ensiled and analyzed on four different days (D0, D7, D14, and D90) (n = 80). Principal component analysis based on the NIR data revealed differences according to the days of harvest, differences between winter cereals and Italian ryegrass forages, and differences in the fermentation stages of silages. The partial least square regression models for crude protein (CP), crude fiber (CF), and ash gave excellent determination coefficient in cross-validation (R2CV > 0.9), while models for ether extract (EE) and total sugar content were weaker (R2CV = 0.87 and 0.74, respectively). The values of root mean square error of cross-validation were 0.59, 0.76, 0.22, 0.31, and 2.36 %DM, for CP, CF, EE, ash, and total sugar, respectively. NIR proved to be an efficient tool in evaluating type and growth differences of the winter cereals and Italian ryegrass forage mixtures and the quality changes that occur during ensiling.

Open Access: Yes

DOI: 10.1111/asj.13823

Machine Olfaction to Evaluate the Stability of the Odor Profile of Pancakes Enriched with Docosahexaenoic Acid and Anthocyanins

Publication Name: Food Analytical Methods

Publication Date: 2022-07-01

Volume: 15

Issue: 7

Page Range: 1961-1967

Description:

Increasing consumer awareness on good health has drawn the attention to health promoting natural dietary substances. However, since the organoleptic profile of foods highly influences the consumers’ preference, and it is often decisive in the purchase, it is important to objectively describe and evaluate the effect of the applied bioactive ingredients on aroma. In this study, pancakes enriched with docosahexaenoic acid and anthocyanins were tested with electronic sensor array technology against control products. Samples were analyzed with an Alpha MOS FOX4000 electronic nose (EN) after 20 to 297 days of frozen storage at −20 °C. Multivariate analysis of the acquired EN data showed a strong relation between the number of days that samples were stored and the odor describing sensor signals of enriched samples (R2 = 0.59), but the observed relation was broken in the case of control (not enriched) samples (R2 = 0.08). When a supervised classification of enriched and control samples was done, the ratio of correctly identified samples in cross-validation was 95.1% at short-term storage (< 140 days), while the hit rate dropped to 80.4% at prolonged storage (> 140 days). This signified the existing but less intensive odor differences. The electronic nose technology was proven to be applicable in the characterization of one type of bioactive-enriched foods, while it was also useful in the monitoring of odor alterations during storage.

Open Access: Yes

DOI: 10.1007/s12161-022-02232-3

The recent advances of near-infrared spectroscopy in dairy production—a review

Publication Name: Critical Reviews in Food Science and Nutrition

Publication Date: 2022-01-01

Volume: 62

Issue: 3

Page Range: 810-831

Description:

One of the major issues confronting the dairy industry is the efficient evaluation of the quality of feed, milk and dairy products. Over the years, the use of rapid analytical methods in the dairy industry has become imperative. This is because of the documented evidence of adulteration, microbial contamination and the influence of feed on the quality of milk and dairy products. Because of the delays involved in the use of wet chemistry methods during the evaluation of these products, rapid analytical techniques such as near-infrared spectroscopy (NIRS) has gained prominence and proven to be an efficient tool, providing instant results. The technique is rapid, nondestructive, precise and cost-effective, compared with other laboratory techniques. Handheld NIRS devices are easily used on the farm to perform quality control measures on an incoming feed from suppliers, during feed preparation, milking and processing of cheese, butter and yoghurt. This ensures that quality feed, milk and other dairy products are obtained. This review considers research articles published in reputable journals which explored the possible application of NIRS in the dairy industry. Emphasis was on what quality parameters were easily measured with NIRS, and the limitations in some instances.

Open Access: Yes

DOI: 10.1080/10408398.2020.1829540

Trends in artificial aroma sensing by means of electronic nose technologies to advance dairy production–a review

Publication Name: Critical Reviews in Food Science and Nutrition

Publication Date: 2022-01-01

Volume: 63

Issue: 2

Page Range: 234-248

Description:

Controversies surrounding the name and how the electronics nose (e-nose) works have been at the center stage since the advent of the technology. Notwithstanding the controversies, the technology has gained popularity in the sensory analysis of dairy foods, because of its rapid results delivery on product aroma profile or pattern, which can be used to assess quality. This review critically evaluated the advances made in the application of the e-nose or artificial sensory system in the dairy industry, focusing on the evaluation of milk, yoghurt and cheese properties, and the trends and prospects of the technology. Most of the e-nose devices applied in the available scientific publications used sensors such as metal oxide semiconductor sensors (MOS), metal-oxide-semiconductor field-effect transistor (MOSFET), conducting polymers composites and quartz microbalance (QMB), and flame ionization detector FID, in a recent study. Though known for aroma sensing, the technology has been applied to evaluate the shelf life or microbial spoilage and to discriminate dairy products based on the volatile profile composition, as determined by the sensors. In most cases, the limitation of the technology is the inability of it to provide information on the nature of constituting compounds, except in gas chromatography and mass spectrometry-based e-nose systems.

Open Access: Yes

DOI: 10.1080/10408398.2021.1945533