Abdulqader Bin Sahl

57947183800

Publications - 2

Electrification of oil refineries through multi-objective multi-period graph-theoretical planning: A crude distillation unit case study

Publication Name: Journal of Cleaner Production

Publication Date: 2024-01-01

Volume: 434

Issue: Unknown

Page Range: Unknown

Description:

Electrification using renewable energy sources is the key to paving a sustainable and cleaner future for the oil and gas sector, which is known to be a significant carbon dioxide emitter. Nevertheless, the suitability of the electrification designs heavily depends on the seasonal availability of renewable energy sources. This work proposes to use a multi-period graph-theoretical (P-graph) approach to determine the optimal retrofit strategy to achieve electrification with consideration of economic and environmental factors. Both single-period and multi-period models are considered via a graph-theoretical approach to rank and evaluate all the combinatorically feasible electrification pathways based on the overall performance. The effectiveness of the proposed method is developed using a crude distillation unit (CDU) case study adopted from a multinational company. The effectiveness of the proposed method is illustrated using a crude distillation unit (CDU) case study shown in three different scenarios that include prioritizing economic aspect (Scenario 1), prioritizing environmental aspect (Scenario 2), and considering equal importance of both aspects (Scenario 3). For single-period operation, the results showed a mix of natural gas and hydropower energy, exclusive use of onshore wind energy, and a mix of onshore wind energy and biogas cogeneration energy for Scenario 1, Scenario 2, and Scenario 3, respectively. In contrast, the multi-period model also utilized nuclear energy for Scenario 2 and Scenario 3 given the seasonal availability constraint. Following that, a sensitivity analysis is conducted to see the effect of the absence of the most influential energy sources on the optimal solution of each scenario and the top solutions under budget and CO2 emission constraints. Pareto analysis is outlined to offer an understanding of tradeoffs between differently prioritized solutions that decision-makers can select. The combination of the proposed analysis provides a systemic approach towards transforming traditional industries towards a cleaner future via electrification.

Open Access: Yes

DOI: 10.1016/j.jclepro.2023.140179

Exploring N-best solution space for heat integrated hydrogen regeneration network using sequential graph-theoretic approach

Publication Name: International Journal of Hydrogen Energy

Publication Date: 2023-02-12

Volume: 48

Issue: 13

Page Range: 4943-4959

Description:

To achieve the ever-stringent sustainable goals, this paper aims to synthesize a heat integrated hydrogen regeneration network (HIHRN) using a graph-theoretic-based sequential method. Firstly, the optimal and near-optimal structures for a hydrogen regeneration networks (HRN) are determined using P-graph model with consideration of both impurity and pressure constraints. These networks are then used as inputs in P-HENS software to generate a list of optimal and near-optimal heat exchanger network (HEN) structures. An eight source and sink problem is used to demonstrate the effectiveness of the proposed method. There are 199,677 feasible HIHRN structures identified, while the 6 near-optimal solutions which are within 0.05% tolerance of the optimal network cost (i.e., less than 33.04 M$/y) are presented together with the top four HEN designs that can offer comparable costs (∼115,500 $/y). In addition, the impacts of pressure swing adsorber (PSA) pressure drop consideration and minimum temperature difference on the optimal design are also presented.

Open Access: Yes

DOI: 10.1016/j.ijhydene.2022.10.196