Dávid Gábor Bányai
58929100200
Publications - 2
Remanufacturing a Synchronous Reluctance Machine with Aluminum Winding: An Open Benchmark Problem for FEM Analysis
Publication Name: Electronics Switzerland
Publication Date: 2024-02-01
Volume: 13
Issue: 4
Page Range: Unknown
Description:
The European Union’s increasing focus on sustainable and eco-friendly product design has resulted in significant pressure on original equipment manufacturers to adopt more environmentally conscious practices. As a result, the remanufacturing of end-of-life electric machines is expected to become a promising industrial segment. Identifying the missing parameters of these types of machines will play an essential role in creating feasible and reliable redesigns and remanufacturing processes. A few case studies related to this problem have been published in the literature; however, some novel, openly accessible benchmark problems can facilitate the research and function as a basis for comparing and validating novel numerical methods. This paper presents the identification process of an experimental synchronous machine. It outlines methodologies for identifying material properties, winding schemes, and other critical parameters for the finite element analysis and modelling of electric machines with incomplete information. The machine in question is intended for remanufacturing, with the plan to replace its faulty winding with an aluminium-based alternative. It also serves as an open benchmark problem for researchers, designers, and practitioners.
Open Access: Yes
Linear Quadratic Robust Control of Synchronous Reluctance Motor †
Publication Name: Engineering Proceedings
Publication Date: 2024-01-01
Volume: 79
Issue: 1
Page Range: Unknown
Description:
Synchronous reluctance motors (SynRMs) play a key role in modern vehicles as they do not require permanent magnets and sliding brushes, reducing maintenance requirements and increasing reliability. My research focused on the development of robust torque control for SynRM. In the simulations, I compared the linear quadratic (LQ) controller with the conventional proportional–integral (PI) controller. To apply the LQ control method, I converted the nonlinear motor model into a linear one. We expect the results of this research to show that the LQ controller provides faster and more robust performance than the PI controller. LQ control can provide faster response times and a more stable operation, which are particularly important under dynamic vehicle operating conditions. Although LQ control is more computationally intensive and takes longer to fine tune, the results show that it results in a better and more stable control system. Such benefits are significant in dynamic vehicle operating conditions where fast and reliable torque control is essential. Overall, it can be concluded that advanced control techniques such as LQ can contribute to increasing the efficiency and performance of synchronous reluctance motors in the automotive industry, thus contributing to the development of sustainable and reliable vehicles.
Open Access: Yes