Ethar H. Abbas

59348937600

Publications - 3

Sensitivity analysis and optimization of pier shape scour prediction using HEC-RAS

Publication Name: Pollack Periodica

Publication Date: 2025-06-27

Volume: 20

Issue: 2

Page Range: 8-15

Description:

Scour around bridge piers threatens bridge stability. This study uses the Hydrologic Engineering Center River Analysis System to improve depth estimates for various pier shapes. The Colorado State University and Froehlich equations were tested with a one-dimensional model calibrated for circular, square, rectangular, oblong, oval, and cylindrical piers. Sensitivity analysis identified coefficients K2, K3, flow velocity, and depth as key factors, with K2 being most significant. The Colorado State University equation overestimated scour depths, especially for square piers. The Froehlich method provided more accurate predictions, confirming the system’s value in hydraulic modeling for bridge stability analysis.

Open Access: Yes

DOI: 10.1556/606.2024.01211

Prediction of Scour Depth for Diverse Pier Shapes Utilizing Two-Dimensional Hydraulic Engineering Center’s River Analysis System Sediment Model

Publication Name: Fluids

Publication Date: 2024-11-01

Volume: 9

Issue: 11

Page Range: Unknown

Description:

Examining scouring around bridge piers is crucial for ensuring water-related infrastructure’s long-term safety and stability. Accurate forecasting models are essential for addressing scour, especially in complex water systems where traditional methods fall short. This study investigates the application of the HEC-RAS 2D sedimentation model, which has recently become available for detailed sediment analysis, to evaluate its effectiveness in predicting scoring around various pier shapes and under different water conditions. This study offers a comprehensive assessment of the model’s predictive capabilities by focusing on variables such as water velocity, shear stress, and riverbed changes. Particular attention was paid to the influence of factors like floating debris and different pier geometries on scour predictions. The results demonstrate that while the HEC-RAS 2D model generally provides accurate predictions for simpler pier shapes—achieving up to 85% precision—it shows varied performance for more complex designs and debris-influenced scenarios. Specifically, the model overpredicted scouring depths by approximately 20% for diamond-shaped piers and underpredicted by 15% for square piers in debris conditions. Elliptical piers, in contrast, experienced significantly less erosion, with scour depths up to 30% shallower compared to other shapes. This study highlights the novel application of the HEC-RAS 2D model in this context and underscores its strengths and limitations. Identified issues include difficulties in modeling water flow and debris-induced bottlenecks. This research points to the improved calibration of sediment movement parameters and the development of advanced computational techniques to enhance scour prediction accuracy in complex environments. This work contributes valuable insights for future research and practical applications in civil engineering, especially where traditional scour mitigation methods, such as apron coverings, are not feasible.

Open Access: Yes

DOI: 10.3390/fluids9110247

Advanced Numerical Simulation of Scour around Bridge Piers: Effects of Pier Geometry and Debris on Scour Depth

Publication Name: Journal of Marine Science and Engineering

Publication Date: 2024-09-01

Volume: 12

Issue: 9

Page Range: Unknown

Description:

Investigating different pier shapes and debris Finteractions in scour patterns is vital for understanding the risks to bridge stability. This study investigates the impact of different shapes of pier and debris interactions on scour patterns using numerical simulations with flow-3D and controlled laboratory experiments. The model setup is rigorously calibrated against a physical flume experiment, incorporating a steady-state flow as the initial condition for sediment transport simulations. The Fractional Area/Volume Obstacle Representation (FAVOR) technique and the renormalized group (RNG) turbulence model enhance the simulation’s precision. The numerical results indicate that pier geometry is a critical factor influencing the scour depth. Among the tested shapes, square piers exhibit the most severe scour, with depths reaching 5.8 cm, while lenticular piers show the least scour, with a maximum depth of 2.5 cm. The study also highlights the role of horseshoe, wake, and shear layer vortices in determining scour locations, with varying impacts across different pier shapes. The Q-criterion study identified debris-induced vortex generation and intensification. The debris amount, thickness, and pier diameter (T/Y) significantly affect the scouring patterns. When dealing with high wedge (HW) debris, square piers have the largest scour depth at T/Y = 0.25, while lenticular piers exhibit a lower scour. When debris is present, the scour depth rises at T/Y = 0.5. Depending on the form of the debris, a significant fluctuation of up to 5 cm was reported. There are difficulties in precisely estimating the scour depth under complicated circumstances because of the disparity between numerical simulations and actual data, which varies from 6% for square piers with a debris relative thickness T/Y = 0.25 to 32% for cylindrical piers with T/Y = 0.5. The study demonstrates that while flow-3D simulations align reasonably well with the experimental data under a low debris impact, discrepancies increase with more complex debris interactions and higher submersion depths, particularly for cylindrical piers. The novelty of this work lies in its comprehensive approach to evaluating the effects of different pier shapes and debris interactions on scour patterns, offering new insights into the effectiveness of flow-3D simulations in predicting the scour patterns under varying conditions.

Open Access: Yes

DOI: 10.3390/jmse12091637