Bálint Horváth

59387764900

Publications - 2

Performance of Low-Cost Air Temperature Sensors and Applied Calibration Techniques—A Systematic Review

Publication Name: Atmosphere

Publication Date: 2025-07-01

Volume: 16

Issue: 7

Page Range: Unknown

Description:

Low-cost air temperature sensors are an emerging theme in environmental monitoring. These sensors offer the advantage of making microclimate monitoring feasible due to their affordability. However, they are limited by the quality of the data they provide; in many cases, they have been reported to have presented errors in the sensor readings. These errors have been shown to improve after calibration was applied. The lack of a comprehensive understanding of the available calibration techniques, models, and sensor types has led to studies presenting heterogeneity in models and techniques alongside different performance metrics. To address this gap, this study conducted a systematic review following the PRISMA guidelines, reviewing studies from 2015 to 2024 across the databases Web of Science and Scopus, alongside the search engine Google Scholar. The aim was to identify the calibration techniques and models, the commercially available low-cost air temperature sensors used, the performance metrics utilised, and the calibration settings. The findings presented three main categories of calibration models utilised in the collected studies: linear, polynomial, and machine learning. Twenty-two commercially available low-cost sensors were identified, with the DHT22 sensor being the most utilised. Indoor settings were identified as the most preferred for conducting calibrations. Key challenges included limitations in reported results for calibration by the studies, the use of different performance metrics across studies, insufficient studies conducting calibration, and the diversity in sensor types utilised.

Open Access: Yes

DOI: 10.3390/atmos16070842

Effects of Various Herbicide Types and Doses, Tillage Systems, and Nitrogen Rates on CO2 Emissions from Agricultural Land: A Literature Review

Publication Name: Agriculture Switzerland

Publication Date: 2024-10-01

Volume: 14

Issue: 10

Page Range: Unknown

Description:

Although herbicides are essential for global agriculture and controlling weeds, they impact soil microbial communities and CO2 emissions. However, the effects of herbicides, tillage systems, and nitrogen fertilisation on CO2 emissions under different environmental conditions are poorly understood. This review explores how various agricultural practices and inputs affect CO2 emissions and addresses the impact of pest-management strategies, tillage systems, and nitrogen fertiliser usage on CO2 emissions using multiple databases. Key findings indicate that both increased and decreased tendencies in greenhouse gas (GHG) emissions were observed, depending on the herbicide type, dose, soil properties, and application methods. Several studies reported a positive correlation between CO2 emissions and increased agricultural production. Combining herbicides with other methods effectively controls emissions with minimal chemical inputs. Conservation practices like no-tillage were more effective than conventional tillage in mitigating carbon emissions. Integrated pest management, conservation tillage, and nitrogen fertiliser rate optimisation were shown to reduce herbicide use and soil greenhouse gas emissions. Fertilisers are similarly important; depending on the dosage, they may support yield or harm the soil. Fertiliser benefits are contingent on appropriate management practices for specific soil and field conditions. This review highlights the significance of adaptable management strategies that consider local environmental conditions and can guide future studies and inform policies to promote sustainable agriculture practices worldwide.

Open Access: Yes

DOI: 10.3390/agriculture14101800