Péter Ákos Mesterházi

6504197176

Publications - 2

Aerial Image-Based Crop Row Detection and Weed Pressure Mapping Method

Publication Name: Agronomy

Publication Date: 2025-08-01

Volume: 15

Issue: 8

Page Range: Unknown

Description:

Accurate crop row detection is crucial for determining weed pressure (weeds item per square meter). However, this task is complicated by the similarity between crops and weeds, the presence of missing plants within rows, and the varying growth stages of both. Our hypothesis was that in drone imagery captured at altitudes of 20–30 m—where individual plant details are not discernible—weed presence among crops can be statistically detected, allowing for the generation of a weed distribution map. This study proposes a computer vision detection method using images captured by unmanned aerial vehicles (UAVs) consisting of six main phases. The method was tested on 208 images. The algorithm performs well under normal conditions; however, when the weed density is too high, it fails to detect the row direction properly and begins processing misleading data. To investigate these cases, 120 artificial datasets were created with varying parameters, and the scenarios were analyzed. It was found that a rate variable—in-row concentration ratio (IRCR)—can be used to determine whether the result is valid (usable) or invalid (to be discarded). The F1 score is a metric combining precision and recall using a harmonic mean, where “1” indicates that precision and recall are equally weighted, i.e., β = 1 in the general Fβ formula. In the case of moderate weed infestation, where 678 crop plants and 600 weeds were present, the algorithm achieved an F1 score of 86.32% in plant classification, even with a 4% row disturbance level. Furthermore, IRCR also indicates the level of weed pressure in the area. The correlation between the ground truth weed-to-crop ratio and the weed/crop classification rate produced by the algorithm is 98–99%. As a result, the algorithm is capable of filtering out heavily infested areas that require full weed control and capable of generating weed density maps on other cases to support precision weed management.

Open Access: Yes

DOI: 10.3390/agronomy15081762

Weed Detection and Classification with Computer Vision Using a Limited Image Dataset

Publication Name: Applied Sciences Switzerland

Publication Date: 2024-06-01

Volume: 14

Issue: 11

Page Range: Unknown

Description:

In agriculture, as precision farming increasingly employs robots to monitor crops, the use of weeding and harvesting robots is expanding the need for computer vision. Currently, most researchers and companies address these computer vision tasks with CNN-based deep learning. This technology requires large datasets of plant and weed images labeled by experts, as well as substantial computational resources. However, traditional feature-based approaches to computer vision can extract meaningful parameters and achieve comparably good classification results with only a tenth of the dataset size. This study presents these methods and seeks to determine the minimum number of training images required to achieve reliable classification. We tested the classification results with 5, 10, 20, 40, 80, and 160 images per weed type in a four-class classification system. We extracted shape features, distance transformation features, color histograms, and texture features. Each type of feature was tested individually and in various combinations to determine the best results. Using six types of classifiers, we achieved a 94.56% recall rate with 160 images per weed. Better results were obtained with more training images and a greater variety of features.

Open Access: Yes

DOI: 10.3390/app14114839