Abdelkarim Hegab

6602220450

Publications - 1

Adaptive Speed Tuning of Permanent Magnet Synchronous Motors Using Intelligent Fuzzy Based Controllers for Pumping Applications

Publication Name: Processes

Publication Date: 2025-05-01

Volume: 13

Issue: 5

Page Range: Unknown

Description:

This study focuses on enhancing the performance of Permanent Magnet Synchronous Motors (PMSMs) in pumping applications by improving motor torque through the integration of advanced control strategies. The dq-axis model of a PMSM is utilized to facilitate precise control and dynamic response. The proposed approach combines Fuzzy Logic Control (FLC) and Fuzzy Proportional-Integral-Derivative (fuzzy PID) controllers with Vector Control (VC) inverters, specifically designed for PMSMs with salient rotor structures. The salient rotor design inherently provides higher torque density, making it suitable for demanding applications like pumping. The FLC and fuzzy PID controllers are employed to optimize the motor’s dynamic response, ensuring precise torque control and improved efficiency under varying load conditions. The VC inverter further enhances the system’s performance by enabling rapid torque and flux control, reducing torque ripple, and improving overall motor stability. The simulation results demonstrate that the proposed control strategy significantly increases motor torque, enhances energy efficiency, and reduces operational losses in pumping applications. This makes the system more reliable and cost-effective for industrial and agricultural pumping systems, where high torque and energy savings are critical. The integration of FLC, fuzzy PID, and VC with a salient-rotor PMSM offers a robust solution for achieving superior motor performance in real-world pumping scenarios. This work contributes to the development of smarter, more efficient pumping systems, paving the way for enhanced industrial automation and energy management.

Open Access: Yes

DOI: 10.3390/pr13051393