H. Fernandes

7005418232

Publications - 2

Overview of the COMPASS results

Publication Name: Nuclear Fusion

Publication Date: 2022-04-01

Volume: 62

Issue: 4

Page Range: Unknown

Description:

COMPASS addressed several physical processes that may explain the behaviour of important phenomena. This paper presents results related to the main fields of COMPASS research obtained in the recent two years, including studies of turbulence, L-H transition, plasma material interaction, runaway electron, and disruption physics: Tomographic reconstruction of the edge/SOL turbulence observed by a fast visible camera allowed to visualize turbulent structures without perturbing the plasma. Dependence of the power threshold on the X-point height was studied and related role of radial electric field in the edge/SOL plasma was identified. The effect of high-field-side error fields on the L-H transition was investigated in order to assess the influence of the central solenoid misalignment and the possibility to compensate these error fields by low-field-side coils. Results of fast measurements of electron temperature during ELMs show the ELM peak values at the divertor are around 80% of the initial temperature at the pedestal. Liquid metals were used for the first time as plasma facing material in ELMy H-mode in the tokamak divertor. Good power handling capability was observed for heat fluxes up to 12 MW m-2 and no direct droplet ejection was observed. Partial detachment regime was achieved by impurity seeding in the divertor. The evolution of the heat flux footprint at the outer target was studied. Runaway electrons were studied using new unique systems - impact calorimetry, carbon pellet injection technique, wide variety of magnetic perturbations. Radial feedback control was imposed on the beam. Forces during plasma disruptions were monitored by a number of new diagnostics for vacuum vessel (VV) motion in order to contribute to the scaling laws of sideways disruption forces for ITER. Current flows towards the divertor tiles, incl. possible short-circuiting through PFCs, were investigated during the VDE experiments. The results support ATEC model and improve understanding of disruption loads.

Open Access: Yes

DOI: 10.1088/1741-4326/ac301f

Results of Joint Experiments and other IAEA activities on research using small tokamaks

Publication Name: Nuclear Fusion

Publication Date: 2009-09-21

Volume: 49

Issue: 10

Page Range: Unknown

Description:

This paper presents an overview of the results obtained during the Joint Experiments organized in the framework of the IAEA Coordinated Research Project on 'Joint Research Using Small Tokamaks' that have been carried out on the tokamaks CASTOR at IPP Prague, Czech Republic (2005), T-10 at RRC 'Kurchatov Institute', Moscow, Russia (2006), and the most recent one at ISTTOK at IST, Lisbon, Portugal, in 2007. Experimental programmes were aimed at diagnosing and characterizing the core and the edge plasma turbulence in a tokamak in order to investigate correlations between the occurrence of transport barriers, improved confinement, electric fields and electrostatic turbulence using advanced diagnostics with high spatial and temporal resolution. On CASTOR and ISTTOK, electric fields were generated by biasing an electrode inserted into the edge plasma and an improvement of the global particle confinement induced by the electrode positive biasing has been observed. Geodesic acoustic modes were studied using heavy ion beam diagnostics on T-10 and ISTTOK and correlation reflectometry on T-10. ISTTOK is equipped with a gallium jet injector and the technical feasibility of gallium jets interacting with plasmas has been investigated in pulsed and ac operation. The first Joint Experiments have clearly demonstrated that small tokamaks are suitable for broad international cooperation to conduct dedicated joint research programmes. Other activities within the IAEA Coordinated Research Project on Joint Research Using Small Tokamaks are also overviewed. © 2009 IAEA, Vienna.

Open Access: Yes

DOI: 10.1088/0029-5515/49/10/104026