A state-of-the-art review on machine learning techniques for driving behavior analysis: clustering and classification approaches
Publication Name: Complex and Intelligent Systems
Publication Date: 2025-09-01
Volume: 11
Issue: 9
Page Range: Unknown
Description:
Smart mobility has ushered in advanced sensing technologies. These, together with high‑level data analytics, are revolutionizing how we analyze driving behavior. Excellent performance in dealing with real-world, high-technology complexities for machine learning has made wide enthusiasm to utilize them to study driver behavior. This article gives a thorough overview of the important machine learning methods—especially clustering and classification techniques—that help analyze complex driving behaviors, predict fuel and energy use, and improve vehicle safety systems. The review specifically explains unsupervised methods like fuzzy c-means, k-means, and density-based spatial clustering of applications with noise, as well as supervised techniques such as artificial neural networks, k-nearest neighbors, and support vector machines. Also, this review discusses the integration of clustering and classification techniques with hybrid deep learning models, and examines their applications in eco-driving, energy forecasting, and intelligent transport systems while offering novel findings that contribute to more sustainable mobility. Emphasis is placed on how these methods transform vast, heterogeneous driving data into actionable insights that support real-time monitoring and personalized feedback for eco-driving and smart transportation applications. Finally, current benefits and barriers, and future research opportunities and challenges in integrating machine learning into intelligent transportation systems are reviewed. The potential to advance to safer, better, and more sustainable forms of mobility is emphasized.
Open Access: Yes