Development of a Battery Diagnostic Method Based on CAN Data: Examining the Accuracy of Data Received via a Communication Network
Publication Name: Energies
Publication Date: 2024-11-01
Volume: 17
Issue: 22
Page Range: Unknown
Description:
In order to reduce the emissions caused by internal combustion engine vehicles, the industry is introducing more and more electric or hybrid vehicles to the market nowadays. The battery cells and modules of these vehicles require a lot of care, as improper or improperly maintained battery units can cause serious problems inside vehicles and can be extremely dangerous. The safest solution is to keep this unit of a vehicle under constant supervision so that it can be repaired immediately in case of an issue. Since all necessary data can be extracted from a vehicle’s communication network(s) through standard communication protocols, it is advisable to use them for continuous monitoring and diagnostics of units, while also considering cost-effectiveness and simplicity. The data received from here can also be used for measurement of electric powertrains and other parameters. However, since these data go through many conversions and computers (ECUs) before reaching us, their accuracy is questionable. In this study, we present our own custom battery diagnostic tool based on data extracted from a communication network. With the help of commercially available diagnostic tools, we also compare several measurements of the extent of the error limits of the data arriving at the communication network, how far they differ from the real values, and with the help of these, we analyze the accuracy of the device we have made. We present the commonly used Controller Area Network (CAN) communication protocol for passenger vehicles and briefly describe the construction of the high-voltage battery unit of the test vehicle.
Open Access: Yes
DOI: 10.3390/en17225808