During track construction or ballast bed maintenance, ballast layer compaction quality plays an essential role in the following track irregularity accumulation, its lifecycle, and maintenance costs. The ballast compaction process is characterized by its compaction and the accumulation of the stressed state. The elastic wave propagation methods are an effective way for the identification of the ballast bed compaction properties. The paper presents the theoretical and experimental studies of the ballast consolidation under the vibration loading of the sleeper. The practical laboratory study is given by the 1:2.5 scaled physical model of one sleeper and the corresponding ballast layer box. The measurements of ballast pressure and deformations under the vibration loading in the ballast layer and the photogrammetric recording of the ballast flow are carried out. The measurements demonstrate the accumulation of the residual stresses under the ballast layer. Furthermore, the measurements of elastic wave time of flight (ToF) using the shakers under the sleeper and acceleration sensors under the ballast show the substantial increase of the ToF velocities after the tamping process. Moreover, the distribution of the velocities along the sleeper is spatially inhomogeneous. The numeric simulation using the discrete element method (DEM) of the tamping and the testing processes proves the inhomogeneous wave propagation effect. The modeling shows that the main reason for the wave propagation inhomogeneity is the accumulated residual stress distribution and the minor one – the compaction density. Additionally, a method for identifying wave velocity spatial distribution is developed by wave tracing the inhomogeneous medium. The procedures allow ballast identification in the zones outside the shakers.
The maintenance of the ballast substructure is an important cost-driver for railway systems. The problem is that today’s condition monitoring methods are insufficient to collect detailed data on the compaction and stress allocation inside the ballast bed. That makes it challenging to improve the maintenance technology and organization. This study aimed to investigate the applicability of the ultrasound method for analyzing the state of stress of sand-soil and the relation between the residual stress and wave propagation velocity. The experiments on the sand in a box with different allocations of the ultrasonic receivers and pressure measurement cells were produced under different external loading. In addition, the vertical and horizontal stress distributions were measured. The results showed a correlation between the test load, the state of stress, and the ultrasound propagation velocity. Moreover, the residual stresses after the loading cycles were analyzed.
Publication Name: Construction and Building Materials
Publication Date: 2022-01-03
Volume: 314
Issue: Unknown
Page Range: Unknown
Description:
The relatively high maintenance costs of the ballast track are related to the short lifecycle of the ballast layer. The current vertical ballast tamping technology (e.g., Plasser & Theurer, Matisa, etc.) causes high ballast destruction and is neither applicable for unconventional sleepers’ designs nor slab tracks. The side tamping method presents an alternative, ballast saving, and sleeper form independent ballast tamping technology. This paper compares the ballast layer compaction and its resistance to permanent settlements accumulation after the vertical and the side tamping methodologies. Scaled models of ballast layer and tamping units and scaled simulation with discrete element method (DEM) were applied for the comparison. In the laboratory tests, the ballast compaction along the sleeper was estimated using the measurements of elastic wave propagation. The settlements resistance for both tamping methods was estimated under the vibration loading. The tests’ results show 5–7% higher compactness of the ballast layer under the sleeper ends for the side tamping method. The settlement intensity of the ballast layer after the vertical tamping is higher than for the side tamping method. In discrete element modeling, the performed laboratory tests were simulated. The compactness of the ballast bed, as well as the residual stresses, were determined in MATLAB. The side tamping technology provided five times higher residual stresses in the ballast layer below the sleeper than in the case of vertical tamping, which can be explained by the more stable and dense layer resulting from the side tamping ensures higher interlocking between the grains. The simulation of the wave propagation shows an influence of the residual stresses on the wave propagation velocities. The simulated wave propagation velocity was more than two times higher for the side tamping than for the vertical one.