Zoltán Varga

56367048200

Publications - 7

Investigation of the Effect of a New Type of Copper–Sucrose Complex Compound on the Yield and Quality Parameters of Winter Wheat (Triticum aestivum L.)

Publication Name: Agronomy

Publication Date: 2025-07-01

Volume: 15

Issue: 7

Page Range: Unknown

Description:

We conducted experiments on winter wheat grown in copper-deficient soil, where soil tests revealed a more pronounced deficiency in the deeper layers. As climate change reduces precipitation, plants increasingly rely on nutrients from these deeper layers. A copper–sucrose complex—previously unused in agriculture—was applied as a foliar spray during the tillering and flowering stages. Across the three-year average, significant increases were observed starting from the 1 kg ha−1 copper dose in yield, from 0.3 kg ha−1 in crude protein content, and from 0.5 kg ha−1 in wet gluten content compared to the untreated control. For all three parameters, the highest values were achieved with the 2 kg ha−1 dose. Yield increased by 1.03 t ha−1, crude protein by 0.9%, and wet gluten by 2.3% relative to the control. In 2019, high humidity and favorable temperatures during flowering led to fungal infections in control plots, with DON toxin concentrations exceeding the regulatory safety threshold. Following copper–sucrose complex application, DON levels dropped below this threshold, demonstrating a measurable protective effect.

Open Access: Yes

DOI: 10.3390/agronomy15071506

Effects of Vinasse and zinc complex on the yield, crude protein, and gluten of winter wheat

Publication Name: Bio Web of Conferences

Publication Date: 2024-08-23

Volume: 125

Issue: Unknown

Page Range: Unknown

Description:

The primary goal of agricultural production is to produce adequate quantity and quality of crops. One crucial aspect of this is providing the appropriate nutrients to plants. In recent times, there has been a growing emphasis on replenishing micronutrients beside macronutrients, as essential microelements, although in smaller quantities, are indispensable for the cultivation of our crops. In our three-year small-plot experiments, the effect of two foliar fertilizers, Vinasse, which is a byproduct of alcohol production, and a zinc complex on the yield, crude protein, and gluten content of winter wheat, was investigated. The effects of these formulations when applied as foliar fertilizers separately and together, at doses of 50, 100, 250 and 500 l/ha for Vinasse and 0.5 kg/ha for zinc complex, were examined. Based on the results of the small-plot experiments set up in the fall of 2020 and 2021 and harvested in the summer of 2021 and 2022, it can be concluded that using Vinasse + zinc complex treatments a higher yield and better content indicators were achieved compared to the control plots. The highest dose of Vinasse (500 l/ha) + zinc complex (0.5 kg/ha) had the greatest positive effect on yield values.

Open Access: Yes

DOI: 10.1051/bioconf/202412501002

Yield Prediction Using NDVI Values from GreenSeeker and MicaSense Cameras at Different Stages of Winter Wheat Phenology

Publication Name: Drones

Publication Date: 2024-03-01

Volume: 8

Issue: 3

Page Range: Unknown

Description:

This work aims to compare and statistically analyze Normalized Difference Vegetation Index (NDVI) values provided by GreenSeeker handheld crop sensor measurements and calculate NDVI values derived from the MicaSense RedEdge-MX Dual Camera, to predict in-season winter wheat (Triticum aestivum L.) yield, improving a yield prediction model with cumulative growing degree days (CGDD) and days from sowing (DFS) data. The study area was located in Mosonmagyaróvár, Hungary. A small-scale field trial in winter wheat was constructed as a randomized block design including Environmental: N-135.3, P2O5-77.5, K2O-0; Balance: N-135.1, P2O5-91, K2O-0; Genezis: N-135, P2O5-75, K2O-45; and Control: N, P, K 0 kg/ha. The crop growth was monitored every second week between April and June 2022 and 2023, respectively. NDVI measurements recorded by GreenSeeker were taken at three pre-defined GPS points for each plot; NDVI values based on the MicaSense camera Red and NIR bands were calculated for the same points. Results showed a significant difference (p ≤ 0.05) between the Control and treated areas by GreenSeeker measurements and Micasense-based calculated NDVI values throughout the growing season, except for the heading stage. At the heading stage, significant differences could be measured by GreenSeeker. However, remotely sensed images did not show significant differences between the treated and Control parcels. Nevertheless, both sensors were found suitable for yield prediction, and 226 DAS was the most appropriate date for predicting winter wheat’s yield in treated plots based on NDVI values and meteorological data.

Open Access: Yes

DOI: 10.3390/drones8030088

Comparison of plant biostimulating properties of Chlorella sorokiniana biomass produced in batch and semi-continuous systems supplemented with pig manure or acetate

Publication Name: Journal of Biotechnology

Publication Date: 2024-02-10

Volume: 381

Issue: Unknown

Page Range: 27-35

Description:

Microalgae-derived biostimulants provide an eco-friendly biotechnology for improving crop productivity. The strategy of circular economy includes reducing biomass production costs of new and robust microalgae strains grown in nutrient-rich wastewater and mixotrophic culture where media is enriched with organic carbon. In this study, Chlorella sorokiniana was grown in 100 l bioreactors under sub-optimal conditions in a greenhouse. A combination of batch and semi-continuous cultivation was used to investigate the growth, plant hormone and biostimulating effect of biomass grown in diluted pig manure and in nutrient medium supplemented with Na-acetate. C. sorokiniana tolerated the low light (sum of PAR 0.99 ± 0.18 mol/photons/(m2/day)) and temperature (3.7–23.7° C) conditions to maintain a positive growth rate and daily biomass productivity (up to 149 mg/l/day and 69 mg/l/day dry matter production in pig manure and Na-acetate supplemented cultures respectively). The protein and lipid content was significantly higher in the biomass generated in batch culture and dilute pig manure (1.4x higher protein and 2x higher lipid) compared to the Na-acetate enriched culture. Auxins indole-3-acetic acid (IAA) and 2-oxindole-3-acetic acid (oxIAA) and salicylic acid (SA) were present in the biomass with significantly higher auxin content in the biomass generated using pig manure (> 350 pmol/g DW IAA and > 84 pmol/g DW oxIAA) compared to cultures enriched with Na-acetate and batch cultures (< 200 pmol/g DW IAA and < 27 pmol/g DW oxIAA). No abscisic acid and jasmonates were detected. All samples had plant biostimulating activity measured in the mungbean rooting bioassay with the Na-acetate supplemented biomass eliciting higher rooting activity (equivalent to 1–2 mg/l IBA) compared to the pig manure (equivalent to 0.5–1 mg/l IBA) and batch culture (equivalent to water control) generated biomass. Thus C. sorokiniana MACC-728 is a robust new strain for biotechnology, tolerating low light and temperature conditions. The strain can adapt to alternative nutrient (pig manure) and carbon (acetate) sources with the generated biomass having a high auxin concentration and plant biostimulating activity detected with the mungbean rooting bioassay.

Open Access: Yes

DOI: 10.1016/j.jbiotec.2024.01.002

Weed Composition in Hungarian Phacelia (Phacelia tanacetifolia Benth.) Seed Production: Could Tine Harrow Take Over Chemical Management?

Publication Name: Agronomy

Publication Date: 2022-04-01

Volume: 12

Issue: 4

Page Range: Unknown

Description:

Phacelia tanacetifolia, an excellent cover, green manure and honey crop is now widely cultivated throughout the world. One of its principal European seed production regions is north‐western Hungary, where the recent withdrawal of a potent herbicide, linuron, created a new challenge for many growers. The goal of this study is to identify the main factors determining weed species composition in the phacelia fields of the region and to assess the efficiency of tine harrow and clopyralid herbicide in reducing weed abundance and biomass. We carried out a series of weed surveys across the study region following a two‐level design: (i) we estimated the cover of all weed species in 205 fields (broad‐scale survey, BS); and (ii) in 22 of these fields, we provided more precise biomass measurements (counting the individuals and measuring the dry weights of all weed species) in microplots samples (fine‐scale survey; FS). To characterize the fields, 34 background variables were also collected for all of the studied fields. In both investigations, Chenopodium album was by far the most abundant weed. Within the BS, using a minimal adequate model containing 11 terms with significant net effects, 20.93% of the total variation in weed species data could be explained. The variation in species composition was determined by environmental factors (soil pH, clay and K; precipitation and temperature), non‐chemical management variables (crop cover, preceding crop, irrigation and tillage system) and herbicides (linuron and clopyralid). Variation partitioning demonstrated the dominance of environmental and cultural components in shaping the weed species composition. Although the effect of mechanical treatments was most likely masked in the BS by the soil properties, our FS suggests that tine harrow could efficiently decrease the total number and biomass of weeds and can be a useful tool in the phacelia management of the future.

Open Access: Yes

DOI: 10.3390/agronomy12040891

Comparison of monocultures and a mixed culture of three Chlorellaceae strains to optimize biomass production and biochemical content in microalgae grown in a greenhouse

Publication Name: Journal of Applied Phycology

Publication Date: 2021-10-01

Volume: 33

Issue: 5

Page Range: 2755-2766

Description:

Light and temperature are important environmental conditions affecting microalgal growth in outdoor culture. It is essential to evaluate microalgae strains growing under outdoor conditions where they are subjected to variable environmental parameters. The present study investigated three Chlorellaceae strains (Micractinium sp. MACC-728, Chlorella sorokiniana MACC-438, and C. sorokiniana MACC-452) and a mixed culture combining these three strains. Cultures were grown in 2-L bioreactors in a greenhouse over 3 months to assess the effects of high temperature and light on their growth, macromolecule content, and antioxidant and plant-stimulating bioactivities. The most influential environmental parameters on growth were average air temperature and the sum of photosynthetically active radiation, followed by maximum air temperature. The most affected growth parameter was daily change in cell number. Chlorella sorokiniana MACC-438 produced the lowest biomass and was most affected by the high temperature and light conditions. Micractinium sp. produced the highest biomass and was least affected, suggesting it was the most suitable strain for outdoor cultivation. The mixed Chlorellaceae culture performed well in biomass production, exceeding C. sorokiniana monocultures but significantly underyielding in lipid content. Antioxidant activity and the root-stimulating activity varied with strain and culture age. Micractinium sp. had the highest but most variable antioxidant and plant-stimulating activity. Bioactivity in the mixed culture was more consistent, remaining high regardless of culture age and environmental conditions. Thus, mixed cultures of productive strains could be a useful strategy to ensure stable and high-quality biomass production in outdoor cultivation with fluctuating environmental conditions.

Open Access: Yes

DOI: 10.1007/s10811-021-02515-y

Soil moisture distribution mapping in topsoil and its effect on maize yield

Publication Name: Biologia Poland

Publication Date: 2017-08-28

Volume: 72

Issue: 8

Page Range: 847-853

Description:

Soil moisture content directly influences yield. Mapping within field soil moisture content differences provides information for agricultural management practices. In this study we aimed to find a cost-effective method for mapping within field soil moisture content differences. Spatial coverage of the field sampling or TDR method is still not dense enough for site-specific soil management. Soil moisture content can be calculated by measuring the apparent soil electrical conductivity (ECa) using the Veris Soil EC-3100 on-the-go soil mapping tool. ECa is temperature dependent; therefore values collected in different circumstances were standardized to 25°C temperature (EC25). Constants for Archie's adjusted law were calculated separately, using soil temperature data. According to our results, volumetric moisture content can be mapped by applying ECa measurements in our particular field with high spatial accuracy. Even though within-field differences occure in the raw ECa map standardization to EC25 is recommended. Soil moisture map was also compared to yield map showing correlation (R2 = 0.5947) between the two datasets.

Open Access: Yes

DOI: 10.1515/biolog-2017-0100