Liangliang Xiang
57202868094
Publications - 2
Data-driven deep learning for predicting ligament fatigue failure risk mechanisms
Publication Name: International Journal of Mechanical Sciences
Publication Date: 2025-09-01
Volume: 301
Issue: Unknown
Page Range: Unknown
Description:
The pathogenesis of musculoskeletal disorders is closely associated with the cumulative damage and fatigue failure behavior of fibrous connective tissues under long-term repetitive loading. However, significant technological challenges remain in real-time dynamic monitoring of ligament fatigue life, particularly the lack of efficient computational mechanics modeling frameworks and precise assessment tools adaptable to real-world movement scenarios. The multimodal integrated framework for ligament fatigue life assessment was proposed in this study. First, the high-accuracy subject-specific musculoskeletal models were developed based on individualized medical imaging data. A coupled hyperelastic-viscoelastic constitutive model was incorporated to accurately characterize the nonlinear mechanical behavior of ligamentous tissues and their fatigue damage evolution under cyclic loading. Furthermore, by integrating continuum damage mechanics theory, a time-dependent cumulative damage evolution equation was established to systematically quantify the coupling relationship between fatigue failure probability and dynamic mechanical loading. In the data-driven prediction module, an innovative deep-learning model that integrates kinematic-dynamic coupling was developed. By integrating wearable inertial measurement units, the model enables real-time inversion of ligament loading force-fatigue failure states and prediction of fatigue life. This approach effectively overcomes the limitations of traditional mechanical modeling in long-term, multi-scenario dynamic monitoring, achieving high-precision and minimally invasive fatigue life evaluation of ligaments. The proposed computational framework breaks the static-loading constraints of conventional fatigue testing, achieving the dynamic biomechanical analysis and fatigue life prediction under real movement conditions. This work not only provides novel theoretical insights into the mechanisms and modeling of ligament fatigue damage, but also provides a generalizable tool for biomechanical injury prevention, rehabilitation planning, and soft tissue fatigue analysis in the musculoskeletal system.
Open Access: Yes
Rethinking running biomechanics: a critical review of ground reaction forces, tibial bone loading, and the role of wearable sensors
Publication Name: Frontiers in Bioengineering and Biotechnology
Publication Date: 2024-01-01
Volume: 12
Issue: Unknown
Page Range: Unknown
Description:
This study presents a comprehensive review of the correlation between tibial acceleration (TA), ground reaction forces (GRF), and tibial bone loading, emphasizing the critical role of wearable sensor technology in accurately measuring these biomechanical forces in the context of running. This systematic review and meta-analysis searched various electronic databases (PubMed, SPORTDiscus, Scopus, IEEE Xplore, and ScienceDirect) to identify relevant studies. It critically evaluates existing research on GRF and tibial acceleration (TA) as indicators of running-related injuries, revealing mixed findings. Intriguingly, recent empirical data indicate only a marginal link between GRF, TA, and tibial bone stress, thus challenging the conventional understanding in this field. The study also highlights the limitations of current biomechanical models and methodologies, proposing a paradigm shift towards more holistic and integrated approaches. The study underscores wearable sensors’ potential, enhanced by machine learning, in transforming the monitoring, prevention, and rehabilitation of running-related injuries.
Open Access: Yes