Oday Ali Hassen

57207690385

Publications - 3

Adaptive Sign Language Recognition for Deaf Users: Integrating Markov Chains with Niching Genetic Algorithm

Publication Name: AI Switzerland

Publication Date: 2025-08-01

Volume: 6

Issue: 8

Page Range: Unknown

Description:

Sign language recognition (SLR) plays a crucial role in bridging the communication gap between deaf individuals and the hearing population. However, achieving subject-independent SLR remains a significant challenge due to variations in signing styles, hand shapes, and movement patterns among users. Traditional Markov Chain-based models struggle with generalizing across different signers, often leading to reduced recognition accuracy and increased uncertainty. These limitations arise from the inability of conventional models to effectively capture diverse gesture dynamics while maintaining robustness to inter-user variability. To address these challenges, this study proposes an adaptive SLR framework that integrates Markov Chains with a Niching Genetic Algorithm (NGA). The NGA optimizes the transition probabilities and structural parameters of the Markov Chain model, enabling it to learn diverse signing patterns while avoiding premature convergence to suboptimal solutions. In the proposed SLR framework, GA is employed to determine the optimal transition probabilities for the Markov Chain components operating across multiple signing contexts. To enhance the diversity of the initial population and improve the model’s adaptability to signer variations, a niche model is integrated using a Context-Based Clearing (CBC) technique. This approach mitigates premature convergence by promoting genetic diversity, ensuring that the population maintains a wide range of potential solutions. By minimizing gene association within chromosomes, the CBC technique enhances the model’s ability to learn diverse gesture transitions and movement dynamics across different users. This optimization process enables the Markov Chain to better generalize subject-independent sign language recognition, leading to improved classification accuracy, robustness against signer variability, and reduced misclassification rates. Experimental evaluations demonstrate a significant improvement in recognition performance, reduced error rates, and enhanced generalization across unseen signers, validating the effectiveness of the proposed approach.

Open Access: Yes

DOI: 10.3390/ai6080189

Type-2 Neutrosophic Markov Chain Model for Subject-Independent Sign Language Recognition: A New Uncertainty–Aware Soft Sensor Paradigm

Publication Name: Sensors

Publication Date: 2024-12-01

Volume: 24

Issue: 23

Page Range: Unknown

Description:

Uncertainty-aware soft sensors in sign language recognition (SLR) integrate methods to quantify and manage the uncertainty in their predictions. This is particularly crucial in SLR due to the variability in sign language gestures and differences in individual signing styles. Managing uncertainty allows the system to handle variations in signing styles, lighting conditions, and occlusions more effectively. While current techniques for handling uncertainty in SLR systems offer significant benefits in terms of improved accuracy and robustness, they also come with notable disadvantages. High computational complexity, data dependency, scalability issues, sensor and environmental limitations, and real-time constraints all pose significant hurdles. The aim of the work is to develop and evaluate a Type-2 Neutrosophic Hidden Markov Model (HMM) for SLR that leverages the advanced uncertainty handling capabilities of Type-2 neutrosophic sets. In the suggested soft sensor model, the Foot of Uncertainty (FOU) allows Type-2 Neutrosophic HMMs to represent uncertainty as intervals, capturing the range of possible values for truth, falsity, and indeterminacy. This is especially useful in SLR, where gestures can be ambiguous or imprecise. This enhances the model’s ability to manage complex uncertainties in sign language gestures and mitigate issues related to model drift. The FOU provides a measure of confidence for each recognition result by indicating the range of uncertainty. By effectively addressing uncertainty and enhancing subject independence, the model can be integrated into real-life applications, improving interactions, learning, and accessibility for the hearing-impaired. Examples such as assistive devices, educational tools, and customer service automation highlight its transformative potential. The experimental evaluation demonstrates the superiority of the Type-2 Neutrosophic HMM over the Type-1 Neutrosophic HMM in terms of accuracy for SLR. Specifically, the Type-2 Neutrosophic HMM consistently outperforms its Type-1 counterpart across various test scenarios, achieving an average accuracy improvement of 10%.

Open Access: Yes

DOI: 10.3390/s24237828

Cognitive Classifier of Hand Gesture Images for Automated Sign Language Recognition: Soft Robot Assistance Based on Neutrosophic Markov Chain Paradigm

Publication Name: Computers

Publication Date: 2024-04-01

Volume: 13

Issue: 4

Page Range: Unknown

Description:

In recent years, Sign Language Recognition (SLR) has become an additional topic of discussion in the human–computer interface (HCI) field. The most significant difficulty confronting SLR recognition is finding algorithms that will scale effectively with a growing vocabulary size and a limited supply of training data for signer-independent applications. Due to its sensitivity to shape information, automated SLR based on hidden Markov models (HMMs) cannot characterize the confusing distributions of the observations in gesture features with sufficiently precise parameters. In order to simulate uncertainty in hypothesis spaces, many scholars provide an extension of the HMMs, utilizing higher-order fuzzy sets to generate interval-type-2 fuzzy HMMs. This expansion is helpful because it brings the uncertainty and fuzziness of conventional HMM mapping under control. The neutrosophic sets are used in this work to deal with indeterminacy in a practical SLR setting. Existing interval-type-2 fuzzy HMMs cannot consider uncertain information that includes indeterminacy. However, the neutrosophic hidden Markov model successfully identifies the best route between states when there is vagueness. This expansion is helpful because it brings the uncertainty and fuzziness of conventional HMM mapping under control. The neutrosophic three membership functions (truth, indeterminate, and falsity grades) provide more layers of autonomy for assessing HMM’s uncertainty. This approach could be helpful for an extensive vocabulary and hence seeks to solve the scalability issue. In addition, it may function independently of the signer, without needing data gloves or any other input devices. The experimental results demonstrate that the neutrosophic HMM is nearly as computationally difficult as the fuzzy HMM but has a similar performance and is more robust to gesture variations.

Open Access: Yes

DOI: 10.3390/computers13040106