Saad M. Saad
57209645588
Publications - 2
Type-2 Neutrosophic Markov Chain Model for Subject-Independent Sign Language Recognition: A New Uncertainty–Aware Soft Sensor Paradigm
Publication Name: Sensors
Publication Date: 2024-12-01
Volume: 24
Issue: 23
Page Range: Unknown
Description:
Uncertainty-aware soft sensors in sign language recognition (SLR) integrate methods to quantify and manage the uncertainty in their predictions. This is particularly crucial in SLR due to the variability in sign language gestures and differences in individual signing styles. Managing uncertainty allows the system to handle variations in signing styles, lighting conditions, and occlusions more effectively. While current techniques for handling uncertainty in SLR systems offer significant benefits in terms of improved accuracy and robustness, they also come with notable disadvantages. High computational complexity, data dependency, scalability issues, sensor and environmental limitations, and real-time constraints all pose significant hurdles. The aim of the work is to develop and evaluate a Type-2 Neutrosophic Hidden Markov Model (HMM) for SLR that leverages the advanced uncertainty handling capabilities of Type-2 neutrosophic sets. In the suggested soft sensor model, the Foot of Uncertainty (FOU) allows Type-2 Neutrosophic HMMs to represent uncertainty as intervals, capturing the range of possible values for truth, falsity, and indeterminacy. This is especially useful in SLR, where gestures can be ambiguous or imprecise. This enhances the model’s ability to manage complex uncertainties in sign language gestures and mitigate issues related to model drift. The FOU provides a measure of confidence for each recognition result by indicating the range of uncertainty. By effectively addressing uncertainty and enhancing subject independence, the model can be integrated into real-life applications, improving interactions, learning, and accessibility for the hearing-impaired. Examples such as assistive devices, educational tools, and customer service automation highlight its transformative potential. The experimental evaluation demonstrates the superiority of the Type-2 Neutrosophic HMM over the Type-1 Neutrosophic HMM in terms of accuracy for SLR. Specifically, the Type-2 Neutrosophic HMM consistently outperforms its Type-1 counterpart across various test scenarios, achieving an average accuracy improvement of 10%.
Open Access: Yes
DOI: 10.3390/s24237828
Cognitive Classifier of Hand Gesture Images for Automated Sign Language Recognition: Soft Robot Assistance Based on Neutrosophic Markov Chain Paradigm
Publication Name: Computers
Publication Date: 2024-04-01
Volume: 13
Issue: 4
Page Range: Unknown
Description:
In recent years, Sign Language Recognition (SLR) has become an additional topic of discussion in the human–computer interface (HCI) field. The most significant difficulty confronting SLR recognition is finding algorithms that will scale effectively with a growing vocabulary size and a limited supply of training data for signer-independent applications. Due to its sensitivity to shape information, automated SLR based on hidden Markov models (HMMs) cannot characterize the confusing distributions of the observations in gesture features with sufficiently precise parameters. In order to simulate uncertainty in hypothesis spaces, many scholars provide an extension of the HMMs, utilizing higher-order fuzzy sets to generate interval-type-2 fuzzy HMMs. This expansion is helpful because it brings the uncertainty and fuzziness of conventional HMM mapping under control. The neutrosophic sets are used in this work to deal with indeterminacy in a practical SLR setting. Existing interval-type-2 fuzzy HMMs cannot consider uncertain information that includes indeterminacy. However, the neutrosophic hidden Markov model successfully identifies the best route between states when there is vagueness. This expansion is helpful because it brings the uncertainty and fuzziness of conventional HMM mapping under control. The neutrosophic three membership functions (truth, indeterminate, and falsity grades) provide more layers of autonomy for assessing HMM’s uncertainty. This approach could be helpful for an extensive vocabulary and hence seeks to solve the scalability issue. In addition, it may function independently of the signer, without needing data gloves or any other input devices. The experimental results demonstrate that the neutrosophic HMM is nearly as computationally difficult as the fuzzy HMM but has a similar performance and is more robust to gesture variations.
Open Access: Yes