Qian Liu
57962834400
Publications - 2
Influence of bionic footwear on lower limb biomechanics across running experience levels: a controlled laboratory study
Publication Name: Frontiers in Sports and Active Living
Publication Date: 2025-01-01
Volume: 7
Issue: Unknown
Page Range: Unknown
Description:
Introduction: While the biomechanics of lower extremity during running and the impact of conventional running shoes on these traits have been extensively investigated, the influence of bionic shoes on runners remains largely, especially those runners with different experience levels. The aim of this study was to evaluate the biomechanical differences between experienced and novice runners when wearing two distinct types of footwear: bionic shoes and neutral shoes. Methods: Fourteen healthy male heel-strike runners participated and completed the running test wearing two pairs of running shoes respectively. A two-way-repeated-measures analysis of variance was used to determine the effects of participant experience level and shoe type on joint biomechanics. During the stance phase, shoe design primarily influenced the kinematic and dynamic performance of the ankles, knees, and hip joints. Results: When participants wore bionic shoes, there was a significant increase in the range of motion of the ankle and hip joints (p < 0.010), a remarkable increase in knee joint angular velocity (p < 0.010), and a significant decrease in hip joint angular velocity (p < 0.001). Concerning differences in experience levels, experienced runners exhibited significantly higher ankle joint angular velocity (p = 0.005) and knee joint angular velocity (p < 0.010) compared to novice runners, whereas novice runners demonstrated a significantly greater range of knee joint motion than experienced runners (p < 0.050). Conclusion: Our findings preliminarily suggest that experienced runners demonstrate superior performance as well as better stability and motor control of knee joint compared to novice runners who showed smaller knee angular velocity and greater range of motion during running. Furthermore, the increased range of motion of the ankle and hip joints in bionic shoes can activate the relevant muscle groups to a greater extent, which have a certain potential effect on the training performance of runners and the improvement of muscle control ability. While, due to the lack of a certain movement foundation, novice runners may have higher risk of injury.
Open Access: Yes
Biomechanical Investigation of Lower Limbs during Slope Transformation Running with Different Longitudinal Bending Stiffness Shoes
Publication Name: Sensors
Publication Date: 2024-06-01
Volume: 24
Issue: 12
Page Range: Unknown
Description:
Background: During city running or marathon races, shifts in level ground and up-and-down slopes are regularly encountered, resulting in changes in lower limb biomechanics. The longitudinal bending stiffness of the running shoe affects the running performance. Purpose: This research aimed to investigate the biomechanical changes in the lower limbs when transitioning from level ground to an uphill slope under different longitudinal bending stiffness (LBS) levels in running shoes. Methods: Fifteen male amateur runners were recruited and tested while wearing three different LBS running shoes. The participants were asked to pass the force platform with their right foot at a speed of 3.3 m/s ± 0.2. Kinematics data and GRFs were collected synchronously. Each participant completed and recorded ten successful experiments per pair of shoes. Results: The range of motion in the sagittal of the knee joint was reduced with the increase in the longitudinal bending stiffness. Positive work was increased in the sagittal plane of the ankle joint and reduced in the keen joint. The negative work of the knee joint increased in the sagittal plane. The positive work of the metatarsophalangeal joint in the sagittal plane increased. Conclusion: Transitioning from running on a level surface to running uphill, while wearing running shoes with high LBS, could lead to improved efficiency in lower limb function. However, the higher LBS of running shoes increases the energy absorption of the knee joint, potentially increasing the risk of knee injuries. Thus, amateurs should choose running shoes with optimal stiffness when running.
Open Access: Yes
DOI: 10.3390/s24123902