Gábor Saly

59347333300

Publications - 3

Analysis of the Correlation Between Electric Bus Charging Strategies and Carbon Emissions from Electricity Production

Publication Name: World Electric Vehicle Journal

Publication Date: 2025-04-01

Volume: 16

Issue: 4

Page Range: Unknown

Description:

Reducing carbon dioxide emissions in transportation has become a priority for achieving emission targets. Transitioning to electric vehicles significantly decreases global CO2 emissions and reduces urban noise and air pollution. The selection of efficient charging strategies for electric bus fleets substantially influences their environmental impact. This study analyzes the charging strategy for electric bus fleets based on real operational data from Győr, Hungary. It evaluates the impact of different charging times and strategies on CO2 emissions, considering the energy mixes of Hungary, Poland, Germany, and Sweden. A methodology has been developed for defining sustainable and environmentally friendly charging strategies by incorporating operational conditions as well as daily, monthly, and seasonal fluctuations in emission factors. Results indicate substantial potential for emission reduction through the recommended alternative charging strategies, although further studies regarding battery lifespan and economic feasibility of infrastructure investments are recommended. The novelty of this work lies in integrating real charging data with hourly country-specific emission intensity values to assess environmental impacts dynamically. A comparative framework of four charging strategies provides quantifiable insights into emission reduction potential under diverse national energy mixes.

Open Access: Yes

DOI: 10.3390/wevj16040240

Analyzing Energy Efficiency and Battery Supervision in Electric Bus Integration for Improved Urban Transport Sustainability

Publication Name: Sustainability Switzerland

Publication Date: 2024-09-01

Volume: 16

Issue: 18

Page Range: Unknown

Description:

Addressing the critical challenge of reducing local emissions through the electrification of urban public transport, this research specifically focuses on integrating electric buses. The primary objectives are to evaluate energy efficiency and ensure battery cell supervision. Introducing electric buses plays a significant role in reducing emissions, contributing to more sustainable urban transport systems. However, this transition introduces a set of new challenges, including the complexities of electric charging logistics, the establishment of new consumption standards, and the intricate relationships between distance traveled, ambient temperature, passenger load, and battery health. Methodologically, this study collects and examines factors impacting energy consumption, including external temperatures, bus conditions, road conditions, and driver behavior. By analyzing these variables, a baseline for actual consumption can be established, allowing for the calculation of an energy balance to identify energy inefficiencies. This enables the optimization of route planning, the strategic selection of stops, and the efficient scheduling of charging times, along with ensuring the proper scaling of the bus battery system. This study found that energy consumption peaked at 116.73 kWh/100 km in the lowest temperature range of −5 °C to 0 °C. Consumption decreased significantly with rising temperatures, dropping by 25 kWh between 5 °C and 10 °C and by an additional 10 kWh between 10 °C and 15 °C. Beyond 20 °C, variations were more influenced by route and driving style than by temperature. Route and driver variability significantly influenced energy consumption, with up to threefold differences across routes due to factors such as road type and traffic volume. Additionally, there was a 31.85% difference between the most and least efficient drivers, highlighting the critical impact of driving style. Furthermore, this study explores the assessment of battery systems through cell-level diagnostics to detect potential faults. Considering that buses are equipped with significantly more batteries than typical electric vehicles, detecting and localizing faults at the cell level is crucial to avoid the substantial costs and environmental impact associated with replacing large battery systems. Utilizing the results of this research and the applied examination methods, it is possible to enhance energy efficiency and extend battery life, thereby contributing to the development of more sustainable and cost-effective urban transport solutions.

Open Access: Yes

DOI: 10.3390/su16188182

Comprehensive Analysis of the Factors Affecting the Energy Efficiency of Electric Vehicles and Methods to Reduce Consumption: A Review †

Publication Name: Engineering Proceedings

Publication Date: 2024-01-01

Volume: 79

Issue: 1

Page Range: Unknown

Description:

The increasingly stricter environmental regulations and standards aim to reduce the ecological impact of vehicles and promote the sustainable use of natural resources. Improving the energy efficiency of vehicles has become a priority in recent decades. This is a key issue for vehicle development, production, and operation. Several studies and measurements have been conducted to accurately determine vehicles’ energy consumption. This research has investigated and categorized the factors according to external impacts, losses due to vehicle properties, and the effects of vehicle control and energy reduction methods. A better understanding of these factors is crucial for improving energy efficiency.

Open Access: Yes

DOI: 10.3390/engproc2024079079