Blanka Törő

59459303500

Publications - 3

Effects of walking training with and without a robot and standard care on clinical and mobility outcomes: A randomized clinical trial in acute ischemic stroke patients

Publication Name: Experimental Gerontology

Publication Date: 2025-10-15

Volume: 210

Issue: Unknown

Page Range: Unknown

Description:

Background: Stroke incidence rises with age. A stroke can severely affect walking ability, requiring therapy. Robot-assisted walking therapy (ROB) has been advocated as one form of walking rehabilitation in stroke patients. However, its comparative efficacy remains controversial and three-group comparisons are scant. We compared the effects of ROB, walking training therapy without a robot (WTT) and standard treatment therapy (STT) on clinical and mobility outcomes in acute ischemic stroke patients. Methods: Individuals (n = 45, 71 % males, age 64.4y ±6.34), who have recently experienced an ischemic stroke, were randomized to ROB, WTT or STT. Clinical and mobility outcomes were assessed before and after each intervention (3 weeks, 5 sessions/week) and after 5 weeks of no-intervention follow-up. Results: Outcomes did not differ between groups at baseline (p > 0.05). Modified Rankin Scale (primary outcome), improved (p < 0.05) after ROB and WTT vs. STT. These improvements were retained relative to baseline (p < 0.05) after follow-up. Barthel index, Berg Balance Scale, 10-m walking speed, the distance while walking with and without the robot for six minutes, and center pressure velocity in standing improved most after ROB (all p < 0.001), exceeding the changes after WTT which in turn were greater than the changes after STT (p ≤ 0.040). Conclusion: Older adults shortly after an ischemic stroke can quickly learn to walk with a soft robot and retain substantial clinical and mobility improvements at follow-up.

Open Access: Yes

DOI: 10.1016/j.exger.2025.112882

Telerehabilitation After Brain Injuries: Its Efficacy and Role in Reducing Healthcare Burdens

Publication Name: Acta Polytechnica Hungarica

Publication Date: 2023-01-01

Volume: 20

Issue: 8

Page Range: 305-320

Description:

Rehabilitation following brain injuries, such as stroke and other traumatic injuries, presents significant challenges for both patients and healthcare systems. Traditional in-person rehabilitation often requires regular visits to specialized facilities, which can be difficult for patients in remote areas or those with mobility and financial constraints. Telerehabilitation offers a promising solution by enabling patients to continue essential therapy at home, ensuring continuity of care while reducing the burden on healthcare providers. It can be effectively applied across various patient groups, including children, adults, the elderly, amputees, individuals with traumatic neurological injuries, and those with neurocognitive impairments such as dementia. Our telemedicine platform integrates advanced technologies, i.e., 3D motion analysis and Virtual Reality (VR) to enhance home-based physiotherapy. These tools enable precise monitoring, real-time feedback, and immersive therapy sessions, in order to improve coordination, fine motor skills, hand-eye coordination, and the vestibular system, which is crucial for balance. This platform also performs detailed offline data analysis, allowing healthcare professionals to adjust therapy plans based on individual needs. As the demand for rehabilitation services continues to grow, adopting these technologies will be crucial for sustainable, effective healthcare, ultimately improving patient outcomes and shaping a more efficient and equitable future for healthcare systems.

Open Access: Yes

DOI: 10.12700/APH.20.8.2023.8.16

Virtual Reality in Cerebrovascular Rehabilitation: A Mini Review on Clinical Efficacy and Neurological Impacts

Publication Name: Acta Polytechnica Hungarica

Publication Date: 2023-01-01

Volume: 20

Issue: 8

Page Range: 321-336

Description:

The application of virtual reality (VR) technology in both upper and lower limb rehabilitation represents a significant advancement in the field of medicine. VR-based therapies provide patients with the opportunity to engage in intensive, repetitive, and targeted exercises that promote neuroplasticity and improve the motor skills necessary for daily life. VR has long been recommended for the rehabilitation of conditions such as in case of ischemic stroke, Parkinson’s disease, and multiple sclerosis, further underscoring its versatility and therapeutic potential. In our study, we evaluated the effectiveness of VR therapy focusing on stroke rehabilitation. The reviewed VR systems provided motion analysis, tracking, feedback reinforcement, and realistic environments to facilitate the restoration of motor functions. Furthermore, we developed a VR-based therapy aimed at both upper and lower limb motor functions, combined with traditional rehabilitation. The application of VR technology not only promotes the improvement of motor functions but also offers economic advantages by reducing the burden on healthcare workers and increasing rehabilitation capacity. Further research is needed to determine the optimal conditions for applying VR therapy in clinical practice.

Open Access: Yes

DOI: 10.12700/APH.20.8.2023.8.17