István Bányász

7003370613

Publications - 2

Ion-Implanted Diamond Blade Diced Ridge Waveguides in Pr:YLF—Optical Characterization and Small-Signal Gain Measurement

Publication Name: Applied Sciences Switzerland

Publication Date: 2025-05-01

Volume: 15

Issue: 9

Page Range: Unknown

Description:

Planar optical waveguides were fabricated in Pr:YLF crystals by ion implantation. In a further step, ridge waveguides were fabricated using precision diamond dicing. These enable strong light confinement and have propagation losses as low as 0.4 dB/cm. To study the influence of ion implantation on the spectroscopic properties, fluorescence and lifetime measurements were conducted in the ridge waveguides. Under blue pumping, small-signal optical gains of 6.5 dB/cm and 5 dB/cm were demonstrated at wavelengths of 607 nm and 639 nm, respectively. These results make ion-implanted ridge waveguides in Pr:YLF promising candidates for compact integrated lasers in the visible spectral region with high output powers in the watt range.

Open Access: Yes

DOI: 10.3390/app15094956

Direct Writing of Quasi-Sinusoidal and Blazed Surface Relief Optical Transmission Gratings in Bi12GeO20, Er: LiNbO3 and Er: Fe: LiNbO3 Crystals by Nitrogen Ion Microbeams of 5 MeV and 10.5 MeV Energy

Publication Name: Sensors

Publication Date: 2025-02-01

Volume: 25

Issue: 3

Page Range: Unknown

Description:

High diffraction efficiency optical transmission gratings with quasi-sinusoidal and saw-tooth surface relief profiles were fabricated in Bi12GeO20, Er: LiNbO3 and Er: Fe: LiNbO3 crystals by ion beam implantation. The gratings were directly written by nitrogen ion microbeams at energies of 5 MeV and 10.5 MeV. The finest grating constant was 4 μm. Grating constants for the majority of the gratings were 16 μm. The highest amplitudes of the gratings reached 1600 nm. The highest first-order diffraction efficiency obtained in a sinusoidal grating was 25%, close to the theoretical maximum of 33%. The highest first-order diffraction efficiency of a blazed grating was also 25%, without Littrow optimization. Such gratings can be incorporated into integrated optical biosensors.

Open Access: Yes

DOI: 10.3390/s25030804