Félix Lopez Figueroa

7102739746

Publications - 2

Photosynthetic Activity Measured In Situ in Microalgae Cultures Grown in Pilot-Scale Raceway Ponds

Publication Name: Plants

Publication Date: 2024-12-01

Volume: 13

Issue: 23

Page Range: Unknown

Description:

The microalga Scenedesmus sp. (Chlorophyceae) was cultured in a raceway pond (RWP) placed in a greenhouse. The objective of this case study was to monitor the photosynthesis performance and selected physicochemical variables (irradiance, temperature, dissolved oxygen concentration) of microalgae cultures in situ at various depths of RWP. The data of actual photochemical yield Y(II), the electron transport rate monitored by in vivo chlorophyll fluorescence and photosynthetic oxygen production both in situ and ex situ revealed that (i) even in diluted cultures (0.6 g DW L−1), the active photic layer in the culture was only about 1 cm, indicating that most of the culture was “photosynthetically” inactive; (ii) the mechanism of non-photochemical quenching may not be fast enough to respond once the cells move from the surface to the deeper layers; and (iii) even when cells were exposed to a high dissolved oxygen concentration of about 200% sat and higher, the cultures retained a relatively high Y(II) > 0.35 when monitored in situ. The presented work can be used as exemplary data to optimize the growth regime of microalgae cultures in large-scale RWPs by understanding the interplay between photosynthetic activity, culture depth and cell concentration.

Open Access: Yes

DOI: 10.3390/plants13233376

Photosynthesis Monitoring in Microalgae Cultures Grown on Municipal Wastewater as a Nutrient Source in Large-Scale Outdoor Bioreactors

Publication Name: Biology

Publication Date: 2022-10-01

Volume: 11

Issue: 10

Page Range: Unknown

Description:

Microalgae cultures were used for a WW treatment to remediate nutrients while producing biomass and recycling water. In these trials, raceway ponds (RWPs; 1 and 0.5 ha) were located next to a municipal (WW) treatment plant in Mérida, Spain. The ponds were used for continuous, all-year-round microalgae production using WW as a source of nutrients. Neither CO2 nor air was supplied to cultures. The objective was to validate photosynthesis monitoring techniques in large-scale bioreactors. Various in-situ/ex-situ methods based on chlorophyll fluorescence and oxygen evolution measurements were used to follow culture performance. Photosynthesis variables gathered with these techniques were compared to the physiological behavior and growth of cultures. Good photosynthetic activity was indicated by the build-up of dissolved oxygen concentration up to 380% saturation, high photochemical yield (Fv/Fm = 0.62–0.71), and relative electron transport rate rETR between 200 and 450 μmol e m−2 s−1 at midday, which resulted in biomass productivity of about 15–25 g DW m−2 day−1. The variables represent reliable markers reflecting the physiological status of microalgae cultures. Using waste nutrients, the biomass production cost can be significantly decreased for abundant biomass production in large-scale bioreactors, which can be exploited for agricultural purposes.

Open Access: Yes

DOI: 10.3390/biology11101380