L. Vörös

6701867715

Publications - 5

Cataloguing microalgae and Cyanobacteria strains from the Mosonmagyaróvár Algal Culture Collection with in vitro antagonistic activity against phytopathogenic fungi and oomycetes

Publication Name: Phytoparasitica

Publication Date: 2023-09-01

Volume: 51

Issue: 4

Page Range: 747-762

Description:

Microalgae produce many secondary metabolites that are biologically active, including compounds that inhibit microbial growth. These could potentially function as biofungicides. The first selection criteria for potential strains suitable in the phytosanitary market is good in vitro inhibition of growth against specific phytopathogenic fungi and oomycetes and higher biomass productivity rates. In the present study, water extracts were prepared from 280 strains comprising of 33 Cyanophyceae strains (13 genera), 157 Chlorophyceae strains (29 genera), 80 Trebouxiophyceae strains (19 genera), 5 Klebsormidiophyceae strains (1 genus) and 1 Zygnematophyceae strain. These were tested in vitro against 6 phytopathogenic fungi and 3 phytopathogenic oomycetes. In total, 45% of the species had mycelial growth inhibitory activity against at least one pathogen. Cyanobacteria had the highest “hit-rate” (64%), followed by the Chlorophyceae (49%) and Trebouxiophyceae (30%). Water extracts of 19 strains had fungicidal and/or oomyceticidal activity – these were predominantly Cyanobacteria. The Cyanobacteria displayed a wider spectrum of inhibition with five strains being active against three or more phytopathogenic strains. Trichormis variabilis MACC-304 and Tolypothrix tenuis MACC-205 had inhibitory activity against 6 phytopathogens and Nostoc linckia MACC-612 inhibited 4 phytopathogenic strains. Each Chlorophyta strain was only active against 1-2 strains. However, the daily productivity rates of Cyanobacteria were significantly lower than Chlorophyta strains. Further investigation of 15 Nostocales species (Nostocaceae, Tolypothrichaceae and Calotrichaceae) showed the Nostoc species generally had significantly lower biomass generation compared to other Nostocacaeae strains. The most promising strain was Tolypothrix tenuis MACC-205 which had the most potent, broad spectrum fungal and oomyceticidal inhibitory activity as well as significantly higher daily biomass productivity rates. Thus, Cyanobacteria can potentially be developed as an effective agricultural tool for environmentally-friendly disease management.

Open Access: Yes

DOI: 10.1007/s12600-023-01045-2

Photosynthesis Monitoring in Microalgae Cultures Grown on Municipal Wastewater as a Nutrient Source in Large-Scale Outdoor Bioreactors

Publication Name: Biology

Publication Date: 2022-10-01

Volume: 11

Issue: 10

Page Range: Unknown

Description:

Microalgae cultures were used for a WW treatment to remediate nutrients while producing biomass and recycling water. In these trials, raceway ponds (RWPs; 1 and 0.5 ha) were located next to a municipal (WW) treatment plant in Mérida, Spain. The ponds were used for continuous, all-year-round microalgae production using WW as a source of nutrients. Neither CO2 nor air was supplied to cultures. The objective was to validate photosynthesis monitoring techniques in large-scale bioreactors. Various in-situ/ex-situ methods based on chlorophyll fluorescence and oxygen evolution measurements were used to follow culture performance. Photosynthesis variables gathered with these techniques were compared to the physiological behavior and growth of cultures. Good photosynthetic activity was indicated by the build-up of dissolved oxygen concentration up to 380% saturation, high photochemical yield (Fv/Fm = 0.62–0.71), and relative electron transport rate rETR between 200 and 450 μmol e m−2 s−1 at midday, which resulted in biomass productivity of about 15–25 g DW m−2 day−1. The variables represent reliable markers reflecting the physiological status of microalgae cultures. Using waste nutrients, the biomass production cost can be significantly decreased for abundant biomass production in large-scale bioreactors, which can be exploited for agricultural purposes.

Open Access: Yes

DOI: 10.3390/biology11101380

Phylogenetic re-evaluation of previously identified Chlamydomonas (Chlorophyta, Chlamydomonadaceae) strains from The Mosonmagyaróvár Algal Culture Collection, Hungary, using molecular data

Publication Name: South African Journal of Botany

Publication Date: 2019-09-01

Volume: 125

Issue: Unknown

Page Range: 16-23

Description:

Systematic studies on 70 MACC isolates previously identified as ‘Chlamydomonas’, a unicellular flagellate, were carried out based on partial 18S rRNA. The aim of this study was to determine the phylogenetic affiliations of Chlamydomonas strains in the MACC collection. The study found that most of the strains were not Chlamydomonas. Nine clusters of phylogenetically similar taxa were identified. The previous determinations were completed with their new phylogenetic affiliations (partly due to changes in green algae classification). Molecular data revealed that 3 of the 70 strains are from Arenicolinia, 14 are members of the phylogroup Stephanosphaerinia, 11 are Oogamochlamydinia, 1 is Chloromonadinia, 19 are Reinhardtinia, 2 are Polytominia, 9 are Scenedesmaceae, 5 are Moewusinia, and 6 are Chlorella. Clades were established by 18S rRNA similarity and p-distances. This study reveals the need to revise established culture collections whose isolates are solely identified with morphology.

Open Access: Yes

DOI: 10.1016/j.sajb.2019.06.028

Molecular taxonomic evaluation of Anabaena and Nostoc strains from the Mosonmagyaróvár Algal Culture Collection

Publication Name: South African Journal of Botany

Publication Date: 2019-08-01

Volume: 124

Issue: Unknown

Page Range: 80-86

Description:

The taxonomy of genera Anabaena and Nostoc is very controversial. They are typically paraphyletic within phylogenetic trees and show similar morphological characters. The present study aimed to determine the taxonomic relationships among Anabaena and Nostoc strains of the Mosonmagyaróvár Algal Culture Collection (MACC)using 16S rRNA and rbcLX gene sequences. We concluded on the basis of the number of unsuccessful amplifications that more of the examined MACC Nostoc cultures are axenic than the Anabaena cultures. In agreement with previous studies we noticed that the applied phylogenetic algorithms gave congruent results in phylogenetic analyses. However, the genus Nostoc clearly was found not monophyletic in the present study and this finding differed from many of the previous studies. Molecular results contradicted the previous morphology-based classification of some MACC cyanobacteria strains, therefore polyphasic taxonomic approaches are required for the reliable identification of cyanobacterial species. Some strains seemed to be identical based on the alignment of 16S rRNA or rbcLX sequences.

Open Access: Yes

DOI: 10.1016/j.sajb.2019.03.008

The reclassification of 37 strains from The Mosonmagyaróvár Algal Culture Collection, Hungary, which were previously identified as Anabaena (Cyanobacteria, Nostocaceae)

Publication Name: South African Journal of Botany

Publication Date: 2019-07-01

Volume: 123

Issue: Unknown

Page Range: 333-340

Description:

Study on 37 MACC isolates previously identified as “Anabaena,” a freshwater filamentous heterocytous taxon, were carried out using the 16S rRNA. The study found that most of the strains were misidentified at genus level. Three clusters of phylogenetically and morphologically similar taxa were identified. The previous determinations were amended with their new taxonomic classifications (partly due to changes in cyanobacterial classification). Some morphological structures could not be found in the cultures (e.g. akinetes). Molecular data revealed that 6 of the 37 strains are Desmonostoc, 8 are members of the genus Nostoc, 19 strains bear genetic resemblance to the genus Trichormus and 4 strains remain unresolved. Clades were established by 16S rRNA similarity and p-distances. The goal of this study was to amend the strain designations in this collection. This study reveals the necessity to revisit established culture collections that originally used only morphological classifications for species identification.

Open Access: Yes

DOI: 10.1016/j.sajb.2019.03.014