Data-Driven Pavement Performance: Machine Learning-Based Predictive Models

Publication Name: Applied Sciences Switzerland

Publication Date: 2025-04-01

Volume: 15

Issue: 7

Page Range: Unknown

Description:

Featured Application: This research provides effective methodology for pavement performance predictions using the data obtained from finite element analysis and merging it with machine learning algorithms. Traditional methods for predicting pavement performance rely on complex finite element modelling and empirical equations, which are computationally expensive and time-consuming. However, machine learning models offer a time-efficient solution for predicting pavement performance. This study utilizes a range of machine learning algorithms, including linear regression, decision tree, random forest, gradient boosting, K-nearest neighbour, Support Vector Regression, LightGBM and CatBoost, to analyse their effectiveness in predicting pavement performance. The input variables include axle load, truck load, traffic speed, lateral wander modes, asphalt layer thickness, traffic lane width and tire types, while the output variables consist of number of passes to fatigue damage, number of passes to rutting damage, fatigue life reduction in number of years and rut depth at 1.3 million passes. A k-fold cross-validation technique was employed to optimize hyperparameters. Results indicate that LightGBM and CatBoost outperform other models, achieving the lowest mean squared error and highest R² values. In contrast, linear regression and KNN demonstrated the lowest performance, with MSE values up to 188% higher than CatBoost. This study concludes that integrating machine learning with finite element analysis provides further improvements in pavement performance predictions.

Open Access: Yes

DOI: 10.3390/app15073889

Authors - 2