Numerical and Experimental Analysis of Impact Force and Impact Duration with Regard to Radiosondes: Is a PUR Foam Shell an Effective Solution?
Publication Name: Applied Mechanics
Publication Date: 2025-03-01
Volume: 6
Issue: 1
Page Range: Unknown
Description:
This study investigates the effect of a polyurethane (PUR) foam layer on impact force, impact duration, and deformation with regard to radiosondes during drop tests. Numerical (Finite Element Method) and experimental approaches were used to model collisions with and without protective PUR layers. The numerical results demonstrated that adding a soft PUR foam layer reduced peak impact force by 10% while it increased impact duration up to 71%. Experimental drop tests confirmed the numerical outcomes as peak impact force difference was 7% between simulations and experiments, while impact duration differed only by 11%. Besides force and duration, impact deformation was also investigated by an FEM model and high-speed camera footage on radiosondes with a PUR foam layer. The FEM model was able to approximate well the deformation magnitude since the numerical deformation was only 2% lower compared to the experimental data. In summary, a reliable and validated FEM model was created. On the one hand, this model allows the analysis of different protective layers around a radiosonde. On the other hand, it can adequately predict the impact behavior of radiosondes by incorporating multiple important factors. In addition, it has been confirmed that incorporating a soft PUR foam layer significantly improves safety by reducing impact force and extending impact duration.
Open Access: Yes