Reliability Assessment of Reinforced Concrete Beams under Elevated Temperatures: A Probabilistic Approach Using Finite Element and Physical Models
Publication Name: Sustainability Switzerland
Publication Date: 2023-04-01
Volume: 15
Issue: 7
Page Range: Unknown
Description:
A novel computational model is proposed in this paper considering reliability analysis in the modelling of reinforced concrete beams at elevated temperatures, by assuming that concrete and steel materials have random mechanical properties in which those properties are treated as random variables following a normal distribution. Accordingly, the reliability index is successfully used as a constraint to restrain the modelling process. A concrete damage plasticity constitutive model is utilized in this paper for the numerical models, and it was validated according to those data which were gained from laboratory tests. Detailed comparisons between the models according to different temperatures in the case of deterministic designs are proposed to show the effect of increasing the temperature on the models. Other comparisons are proposed in the case of probabilistic designs to distinguish the difference between deterministic and reliability-based designs. The procedure of introducing the reliability analysis of the nonlinear problems is proposed by a nonlinear code considering different reliability index values for each temperature case. The results of the proposed work have efficiently shown how considering uncertainties and their related parameters plays a critical role in the modelling of reinforced concrete beams at elevated temperatures, especially in the case of high temperatures.
Open Access: Yes
DOI: 10.3390/su15076077