B. Tál

26030084100

Publications - 5

Advanced neutral alkali beam diagnostics for applications in fusion research (invited)

Publication Name: Review of Scientific Instruments

Publication Date: 2018-10-01

Volume: 89

Issue: 10

Page Range: Unknown

Description:

Diagnosing the density profile at the edge of high temperature fusion plasmas by an accelerated lithium beam is a known technique since decades. By knowledge of the relevant atomic physics rate coefficients, the plasma electron density profile can be calculated from the relatively calibrated light profile along the beam. Several additional possibilities have already been demonstrated: Charge Exchange Resonance Spectroscopy (CXRS) for ion temperature/flow and Zeeman polarimetry for edge plasma current; therefore the Li-beam diagnostic offers a wealth of information at the plasma edge. The weaknesses of the method are the relatively faint light signal, background light, and technical difficulties of the beam injector which usually seriously limit the applicability. In this talk, we present systematic developments in alkali-beam diagnostics (Li, Na) for the injector and the observation system and detectors which resulted in strongly increased capabilities. Advanced systems have been built, and microsecond scale density profile, turbulence, and zonal flow measurement have been demonstrated. A novel edge current measurement technique has also been designed, and components have been tested with potential microsecond-scale time resolution. Additional possibilities of these advanced systems for spectral measurements (CXRS and various Zeeman schemes) are also discussed.

Open Access: Yes

DOI: 10.1063/1.5039309

Joint experiments on the Tokamaks CASTOR and Ta10

Publication Name: Aip Conference Proceedings

Publication Date: 2008-12-01

Volume: 996

Issue: Unknown

Page Range: 24-33

Description:

Small tokamaks may significantly contribute to the better understanding of phenomena in a wide range of fields such as plasma confiement and energy transport; plasma stability in different magnetic configurations; plasma turbulence and its impact on local and global plasma parameters; processes at the plasma edge and plasmaawall interaction; scenarios of additional heating and nonainductive current drive; new methods of plasma profile and parameter control; development of novel plasma diagnostics; benchmarking of new numerical codes and so on. Furthermore, due to the compactness, flexibility, low operation costs and high skill of their personnel small tokamaks are very convenient to develop and test new materials and technologies. Small tokamaks are suitable and important for broad international cooperation, providing the necessary environment and manpower to conduct dedicated joint research programmes. In addition, the experimental work on small tokamaks is very appropriate for the education of students, scientific activities of postagraduate students and for the training of personnel for large tokamaks. The first Joint (Host Laboratory) Experiment (JE1) has been carried out in 2005 on the CASTOR tokamak at the IPP Prague, Czech Republic. It was jointly organized by the IPPaASCR and KFKI HAC, Budapest, involved 20 scientists from 7 countries and was supported through the IAEA and the ICTP, Trieste. The objective of JE1 was to perform studies of plasma edge turbulence and plasma confinement. Following the success of JE1, JE2 has been performed on Ta10 at RRC "Kurchatov Institute" in Moscow; 30 scientists from 13 countries participated in this experiment. This experiment aimed to continue JE1 turbulence studies, now extending them to the plasma core. Results of JE1 and JE2 will be overviewed and compared. © 2008 American Institute of Physics.

Open Access: Yes

DOI: 10.1063/1.2917019

Joint experiments on small tokamaks: Edge plasma studies on CASTOR

Publication Name: Nuclear Fusion

Publication Date: 2007-12-01

Volume: 47

Issue: 5

Page Range: 378-386

Description:

The 1st Joint (Host Laboratory) Experiment on 'joint research using small tokamaks' was carried out using the IPP Prague experimental facility 'CASTOR tokamak'. The main experimental programme was aimed at characterizing the edge plasma in a tokamak by using different advanced diagnostic techniques. It is widely recognized that characterization of phenomena occurring at the plasma edge is essential for understanding the plasma confinement in a tokamak. The edge plasma in small and large scale experiments has many similar features, and the results obtained through detailed measurements in a small flexible device such as CASTOR are in many aspects still relevant to those in large tokamaks. Therefore, it is expected that the results of this joint experiment will have general validity. The radial and poloidal structure of electrostatic turbulence was characterized. The effects of edge biasing were analysed. Radiation fluctuations and profile measurements were performed using fast bolometry. Plasma position measurements were performed using novel Hall sensors. © 2007 IAEA, Vienna.

Open Access: Yes

DOI: 10.1088/0029-5515/47/5/002

The spatial structure of flows, Reynolds stress and turbulence in the CASTOR tokamak

Publication Name: 33rd Eps Conference on Plasma Physics 2006 Eps 2006

Publication Date: 2006-12-01

Volume: 2

Issue: Unknown

Page Range: 1452-1455

Description:

No description provided

Open Access: Yes

DOI: DOI not available