G. Petravich

6506897487

Publications - 2

Advanced neutral alkali beam diagnostics for applications in fusion research (invited)

Publication Name: Review of Scientific Instruments

Publication Date: 2018-10-01

Volume: 89

Issue: 10

Page Range: Unknown

Description:

Diagnosing the density profile at the edge of high temperature fusion plasmas by an accelerated lithium beam is a known technique since decades. By knowledge of the relevant atomic physics rate coefficients, the plasma electron density profile can be calculated from the relatively calibrated light profile along the beam. Several additional possibilities have already been demonstrated: Charge Exchange Resonance Spectroscopy (CXRS) for ion temperature/flow and Zeeman polarimetry for edge plasma current; therefore the Li-beam diagnostic offers a wealth of information at the plasma edge. The weaknesses of the method are the relatively faint light signal, background light, and technical difficulties of the beam injector which usually seriously limit the applicability. In this talk, we present systematic developments in alkali-beam diagnostics (Li, Na) for the injector and the observation system and detectors which resulted in strongly increased capabilities. Advanced systems have been built, and microsecond scale density profile, turbulence, and zonal flow measurement have been demonstrated. A novel edge current measurement technique has also been designed, and components have been tested with potential microsecond-scale time resolution. Additional possibilities of these advanced systems for spectral measurements (CXRS and various Zeeman schemes) are also discussed.

Open Access: Yes

DOI: 10.1063/1.5039309

Two-dimensional density and density fluctuation diagnostic for the edge plasma in fusion devices

Publication Name: Review of Scientific Instruments

Publication Date: 2005-07-01

Volume: 76

Issue: 7

Page Range: Unknown

Description:

A technique is described for the two-dimensional measurement of electron density profile and fluctuations in edge regions of magnetically confined fusion plasmas. The method is based on existing lithium beam beam emission spectroscopy technique, two-dimensional resolution is achieved by electrostatically scanning the beam. If scanning is performed faster than the lifetime of the turbulent structures in the plasma, the diagnostic is capable of measuring the structure of electron density fluctuations as well. The beam strength of currently available beams makes the detection of single fluctuation events impossible, but the full two-dimensional spatial structure of correlations can still be determined. The article describes the technique and fast beam deflection tests up to 250 kHz. The capabilities of such a diagnostic for fluctuation measurement are explored by simulating measurement signals. Measurement of both the two-dimensional density profile, fluctuation correlation function and poloidal flow velocity are demonstrated at the Wendelstein 7-AS stellarator. The shape of the density profile, the radial and poloidal correlation lengths and the flow velocity are in agreement with expectations and previous Langmuir probe measurement. © 2005 American Institute of Physics.

Open Access: Yes

DOI: 10.1063/1.1947727