E. Harsányi

16315819800

Publications - 7

Assessment of Advanced Machine and Deep Learning Approaches for Predicting CO2 Emissions from Agricultural Lands: Insights Across Diverse Agroclimatic Zones

Publication Name: Earth Systems and Environment

Publication Date: 2024-12-01

Volume: 8

Issue: 4

Page Range: 1109-1125

Description:

Prediction of carbon dioxide (CO2) emissions from agricultural soil is vital for efficient and strategic mitigating practices and achieving climate smart agriculture. This study aimed to evaluate the ability of two machine learning algorithms [gradient boosting regression (GBR), support vector regression (SVR)], and two deep learning algorithms [feedforward neural network (FNN) and convolutional neural network (CNN)] in predicting CO2 emissions from Maize fields in two agroclimatic regions i.e., continental (Debrecen-Hungary), and semi-arid (Karaj-Iran). This research developed three scenarios for predicting CO2. Each scenario is developed by a combination between input variables [i.e., soil temperature (Δ), soil moisture (θ), date of measurement (SD), soil management (SM)] [i.e., SC1: (SM + Δ + θ), SC2: (SM + Δ), SC3: (SM + θ)]. Results showed that the average CO2 emission from Debrecen was 138.78 ± 72.04 ppm (n = 36), while the average from Karaj was 478.98 ± 174.22 ppm (n = 36). Performance evaluation results of train set revealed that high prediction accuracy is achieved by GBR in SC1 with the highest R2 = 0.8778, and lowest root mean squared error (RMSE) = 72.05, followed by GBR in SC3. Overall, the performance MDLM is ranked as GBR > FNN > CNN > SVR. In testing phase, the highest prediction accuracy was achieved by FNN in SC1 with R2 = 0.918, and RMSE = 67.75, followed by FNN in SC3, and GBR in SC1 (R2 = 0.887, RMSE = 79.881). The performance of MDLM ranked as FNN > GRB > CNN > SVR. The findings of the research provide insights into agricultural management strategies, enabling stakeholders to work towards a more sustainable and climate-resilient future in agriculture.

Open Access: Yes

DOI: 10.1007/s41748-024-00424-x

Utilizing machine learning and CMIP6 projections for short-term agricultural drought monitoring in central Europe (1900–2100)

Publication Name: Journal of Hydrology

Publication Date: 2024-04-01

Volume: 633

Issue: Unknown

Page Range: Unknown

Description:

Water availability for agricultural practices is dynamically influenced by climatic variables, particularly droughts. Consequently, the assessment of drought events is directly related to the strategic water management in the agricultural sector. The application of machine learning (ML) algorithms in different scenarios of climatic variables is a new approach that needs to be evaluated. In this context, the current research aims to forecast short-term drought i.e., SPI-3 from different climatic predictors under historical (1901–2020) and future (2021–2100) climatic scenarios employing machine learning (bagging (BG), random forest (RF), decision table (DT), and M5P) algorithms in Hungary, Central Europe. Three meteorological stations namely, Budapest (BD) (central Hungary), Szeged (SZ) (east south Hungary), and Szombathely (SzO) (west Hungary) were selected to forecast short-term agriculture drought i.e., Standardized Precipitation Index (SPI-3) in the long run. For this purpose, the ensemble means of three global circulation models GCMs from CMIP6 are being used to get the projected (2021–2100) time series of climatic indicators (i.e., rainfall R, mean temperature T, maximum temperature Tmax, and minimum temperature Tmin under two scenarios of socioeconomic pathways (SSP2-4.5 and SSP4-6.0). The results of this study revealed more severe to extreme drought events in past decades, which are projected to increase in the near future (2021–2040). Man-Kendall test (Tau) along with Sen's slope (SS) also revealed an increasing trend of SPI-3 drought in the historical period with Tau = −0.2, SS = −0.05, and near future with Tau = −0.12, SS = −0.09 in SSP2-4.5 and Tau = −0.1, SS = −0.08 in SSP4-6.0. Implementation of ML algorithms in three scenarios: SC1 (R + T + Tmax + Tmin), SC2 (R), and SC3 (R + T)) at the BD station revealed RF-SC3 with the lowest RMSE RFSC3-TR = 0.33, and the highest NSE RFSC3-TR = 0.89 performed best for forecasting SPI-3 on historical dataset. Hence, the best selected RF-SC3 was implemented on the remaining two stations (SZ and SzO) to forecast SPI-3 from 1901 to 2100 under SSP2-4.5 and SSP4-6.0. Interestingly, RF-SC3 forecasted the SPI-3 under SSP2-4.5, with the lowest RMSE = 0.34 and NSE = 0.88 at SZ and RMSE = 0.34 and NSE = 0.87 at SzO station for SSP2-4.5. Hence, our research findings recommend using SSP2-4.5, to provide more accurate drought predictions from R + T for future projections. This could foster a gradual shift towards sustainability and improve water management resources. However, concrete strategic plans are still needed to mitigate the negative impacts of the projected extreme drought events in 2028, 2030, 2031, and 2034. Finally, the validation of RF for short-term drought prediction on a large historical dataset makes it significant for use in other drought studies and facilitates decision making for future disaster management strategies.

Open Access: Yes

DOI: 10.1016/j.jhydrol.2024.130968

Challenges of sustainable agricultural development with special regard to Internet of Things: Survey

Publication Name: Progress in Agricultural Engineering Sciences

Publication Date: 2022-12-02

Volume: 18

Issue: 1

Page Range: 95-114

Description:

If we want to increase the efficiency of precision technologies to create sustainable agriculture, we need to put developments and their application on a new footing; moreover, a general paradigm shift is needed. There is a need to rethink close-At-hand and far-off innovation concepts to further develop precision agriculture, from both an agricultural, landscape, and natural ecosystem sustainability perspective. With this, unnecessary or misdirected developments and innovation chains can be largely avoided. The efficiency of the agrotechnology and the accuracy of yield prediction can be ensured by continuously re-planning during the growing season according to changing conditions (e.g., meteorological) and growing dataset. The aim of the paper is to develop a comprehensive, thought-provoking picture of the potential application of new technologies that can be used in agriculture, primarily in precision technology-based arable field crop production, which emphasizes the importance of continuous analysis and optimisation between the production unit and its environment. It should also be noted that the new system contributes to reconciling agricultural productivity and environmental integrity. The study also presents research results that in many respects bring fundamental changes in technical and technological development in field production. The authors believe that treating the subsystems of agriculture, landscape, and natural ecosystem (ALNE) as an integrated unit will create a new academic interdisciplinarity. ICT, emphasizing WSN (Wireless Sensor Network), remote sensing, cloud computing, AI (Artificial Intelligence), economics, sociology, ethics, and the cooperation with young students in education can play a significant role in research. This study treats these disciplines according to sustainability criteria. The goal is to help management fulfil the most important expectation of reducing the vulnerability of the natural ecosystem. The authors believe that this article may be one of the starting points for a new interdisciplinarity, ALNE.

Open Access: Yes

DOI: 10.1556/446.2022.00053

Predicting Modified Fournier Index by Using Artificial Neural Network in Central Europe

Publication Name: International Journal of Environmental Research and Public Health

Publication Date: 2022-09-01

Volume: 19

Issue: 17

Page Range: Unknown

Description:

The Modified Fournier Index (MFI) is one of the indices that can assess the erosivity of rainfall. However, the implementation of the artificial neural network (ANN) for the prediction of the MFI is still rare. In this research, climate data (monthly and yearly precipitation (pi, Ptotal) (mm), daily maximum precipitation (Pd-max) (mm), monthly mean temperature (Tavg) (°C), daily maximum mean temperature (Td-max) (°C), and daily minimum mean temperature (Td-min) (°C)) were collected from three stations in Hungary (Budapest, Debrecen, and Pécs) between 1901 and 2020. The MFI was calculated, and then, the performance of two ANNs (multilayer perceptron (MLP) and radial basis function (RBF)) in predicting the MFI was evaluated under four scenarios. The average MFI values were between 66.30 ± 15.40 (low erosivity) in Debrecen and 75.39 ± 15.39 (low erosivity) in Pecs. The prediction of the MFI by using MLP was good (NSEBudapest(SC3) = 0.71, NSEPécs(SC2) = 0.69). Additionally, the performance of RBF was accurate (NSEDebrecen(SC4) = 0.68, NSEPécs(SC3) = 0.73). However, the correlation coefficient between the observed MFI and the predicted one ranged between 0.83 (Budapest (SC2-MLP)) and 0.86 (Pécs (SC3-RBF)). Interestingly, the statistical analyses promoted SC2 (Pd-max + pi + Ptotal) and SC4 (Ptotal + Tavg + Td-max + Td-min) as the best scenarios for predicting MFI by using the ANN–MLP and ANN–RBF, respectively. However, the sensitivity analysis highlighted that Ptotal, pi, and Td-min had the highest relative importance in the prediction process. The output of this research promoted the ANN (MLP and RBF) as an effective tool for predicting rainfall erosivity in Central Europe.

Open Access: Yes

DOI: 10.3390/ijerph191710653

A comparative analysis of data mining techniques for agricultural and hydrological drought prediction in the eastern Mediterranean

Publication Name: Computers and Electronics in Agriculture

Publication Date: 2022-06-01

Volume: 197

Issue: Unknown

Page Range: Unknown

Description:

Drought is a natural hazard which affects ecosystems in the eastern Mediterranean. However, limited historical data for drought monitoring and forecasting are available in the eastern Mediterranean. Thus, implementing machine learning (ML) algorithms could allow for the prediction of future drought events. In this context, the main goals of this research were to capture agricultural and hydrological drought trends by using the Standardized Precipitation Index (SPI) and to assess the applicability of four ML algorithms (bagging (BG), random subspace (RSS), random tree (RT), and random forest (RF)) in predicting drought events in the eastern Mediterranean based on SPI-3 and SPI-12. The results reveal that hydrological drought (SPI-12, −24) was more severe over the study area, where most stations showed a significant (p < 0.05) negative trend. The accuracy of ML algorithms in drought prediction varied in relation to the implementation stage. In the training stage, RT outperformed the other algorithms (Root mean square error (RMSE) = 0.3, Correlation Coefficient (r) = 0.97); the performance of the algorithms can be ranked as follows: RT > RF > BG > RSS for both SPI-3 and SPI-12. In the testing stage, both the BG and RF algorithms had the highest correlation r (observed vs. predicted) (0.58–0.64) and lowest RMSE (0.68–0.88). In contrast, the lowest correlation r (observed vs. predicted) (0.3–0.41) and highest RMSE (0.94–1.10) was calculated for the RT algorithm. However, BG was more dynamic in drought capturing, with the lowest RMSE and highest correlation. In the validation stage, the BG performance was satisfactory (RMSE = 0.62–0.83, r = 0.58–0.79). The output of this research will help decision-makers with drought mitigation plans by using the new four machine learning algorithms.

Open Access: Yes

DOI: 10.1016/j.compag.2022.106925

Impact of agricultural drought on sunflower production across hungary

Publication Name: Atmosphere

Publication Date: 2021-10-01

Volume: 12

Issue: 10

Page Range: Unknown

Description:

In the last few decades, agricultural drought (Ag.D) has seriously affected crop production and food security worldwide. In Hungary, little research has been carried out to assess the impacts of climate change, particularly regarding droughts and crop production, and especially on regional scales. Thus, the main aim of this study was to evaluate the impact of agricultural drought on sunflower production across Hungary. Drought data for the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) were collected from the CAR-BATCLIM database (1961–2010), whereas sunflower production was collected from the Hungarian national statistical center (KSH) on regional and national scales. To address the impact of Ag.D on sunflower production, the sequence of standardized yield residuals (SSYR) and yield losses YlossAD was applied. Additionally, sunflower resilience to Ag.D (SRAg.D) was assessed on a regional scale. The results showed that Ag.D is more severe in the western regions of Hungary, with a significantly positive trend. Interestingly, drought events were more frequent between 1990 and 2010. Moreover, the lowest SSYR values were reported as −3.20 in the Hajdu-Bihar region (2010). In this sense, during the sunflower growing cycle, the relationship between SSYR and Ag.D revealed that the highest correlations were recorded in the central and western regions of Hungary. However, 75% of the regions showed that the plantation of sunflower is not resilient to drought where SRAg.Dx < 1. To cope with climate change in Hungary, an urgent mitigation plan should be implemented.

Open Access: Yes

DOI: 10.3390/atmos12101339

Application of spatio-temporal data in site-specific maize yield prediction with machine learning methods

Publication Name: Precision Agriculture

Publication Date: 2021-10-01

Volume: 22

Issue: 5

Page Range: 1397-1415

Description:

In order to meet the requirements of sustainability and to determine yield drivers and limiting factors, it is now more likely that traditional yield modelling will be carried out using artificial intelligence (AI). The aim of this study was to predict maize yields using AI that uses spatio-temporal training data. The paper has advanced a new method of maize yield prediction, which is based on spatio-temporal data mining. To find the best solution, various models were used: counter-propagation artificial neural networks (CP-ANNs), XY-fused Querynetworks (XY-Fs), supervised Kohonen networks (SKNs), neural networks with Rectangular Linear Activations (ReLU), extreme gradient boosting (XGBoost), support-vector machine (SVM), and different subsets of the independent variables in five vegetation periods. Input variables for modelling included: soil parameters (pH, P2O5, K2O, Zn, clay content, ECa, draught force, Cone index), micro-relief averages, and meteorological parameters for the 63 treatment units in a 15.3 ha research field. The best performing method (XGBoost) reached 92.1% and 95.3% accuracy on the training and the test sets. Additionally, a novel method was introduced to treat individual units in a lattice system. The lattice-based smoothing performed an additional increase in Area under the curve (AUC) to 97.5% over the individual predictions of the XGBoost model. The models were developed using 48 different subsets of variables to determine which variables consistently contributed to prediction accuracy. By comparing the resulting models, it was shown that the best regression model was Extreme Gradient Boosting Trees, with 92.1% accuracy (on the training set). In addition, the method calculates the influence of the spatial distribution of site-specific soil fertility on maize grain yields. This paper provides a new method of spatio-temporal data analyses, taking the most important influencing factors on maize yields into account.

Open Access: Yes

DOI: 10.1007/s11119-021-09833-8